Cargando…
High-Efficiency Extraction of Pantoea alhagi Exopolysaccharides Driven by pH-Related Changes in the Envelope Structure
Increasing numbers of exopolysaccharides and their properties have been explored. However, the difficulty of extracting high-viscosity exopolysaccharides has hindered their further industrialization. In this research, we explored a strategy based on encapsulated structure control under different pH...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9657395/ https://www.ncbi.nlm.nih.gov/pubmed/36364036 http://dx.doi.org/10.3390/molecules27217209 |
_version_ | 1784829683374751744 |
---|---|
author | Ma, Yuhang Sun, Liang Wang, Rui Gu, Yian Xu, Hong Lei, Peng |
author_facet | Ma, Yuhang Sun, Liang Wang, Rui Gu, Yian Xu, Hong Lei, Peng |
author_sort | Ma, Yuhang |
collection | PubMed |
description | Increasing numbers of exopolysaccharides and their properties have been explored. However, the difficulty of extracting high-viscosity exopolysaccharides has hindered their further industrialization. In this research, we explored a strategy based on encapsulated structure control under different pH to efficiently extract Pantoea alhagi exopolysaccharides (PAPS). Results showed that at pH levels of 6, 12, and 13, the extraction efficiency of PAPS was elevated, and the yield did not decrease. The rheological properties of the pH−12-treated PAPS were better than those of PAPS treated at pH 7, while the pH−6-treated PAPS decreased. The effects of pH−12-treated PAPS on soil macroaggregates and soil’s water evaporation rate were similar to those of PAPS treated at pH 7. In addition, we observed that treatment at pH 12 produced a significantly reduced encapsulated structure compared with treatment at pH 7. The proportion of unsaturated fatty acids after treatment at pH 12 was higher than after treatment at pH 7, which may result in reduced encapsulated structure in pH−12 conditions. These results enrich the understanding of the effect that alters pH conditions on the encapsulated structure to improve the extraction efficiency of exopolysaccharides and provide a theoretical basis for the extraction of exopolysaccharides with extreme viscosity. |
format | Online Article Text |
id | pubmed-9657395 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-96573952022-11-15 High-Efficiency Extraction of Pantoea alhagi Exopolysaccharides Driven by pH-Related Changes in the Envelope Structure Ma, Yuhang Sun, Liang Wang, Rui Gu, Yian Xu, Hong Lei, Peng Molecules Article Increasing numbers of exopolysaccharides and their properties have been explored. However, the difficulty of extracting high-viscosity exopolysaccharides has hindered their further industrialization. In this research, we explored a strategy based on encapsulated structure control under different pH to efficiently extract Pantoea alhagi exopolysaccharides (PAPS). Results showed that at pH levels of 6, 12, and 13, the extraction efficiency of PAPS was elevated, and the yield did not decrease. The rheological properties of the pH−12-treated PAPS were better than those of PAPS treated at pH 7, while the pH−6-treated PAPS decreased. The effects of pH−12-treated PAPS on soil macroaggregates and soil’s water evaporation rate were similar to those of PAPS treated at pH 7. In addition, we observed that treatment at pH 12 produced a significantly reduced encapsulated structure compared with treatment at pH 7. The proportion of unsaturated fatty acids after treatment at pH 12 was higher than after treatment at pH 7, which may result in reduced encapsulated structure in pH−12 conditions. These results enrich the understanding of the effect that alters pH conditions on the encapsulated structure to improve the extraction efficiency of exopolysaccharides and provide a theoretical basis for the extraction of exopolysaccharides with extreme viscosity. MDPI 2022-10-25 /pmc/articles/PMC9657395/ /pubmed/36364036 http://dx.doi.org/10.3390/molecules27217209 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ma, Yuhang Sun, Liang Wang, Rui Gu, Yian Xu, Hong Lei, Peng High-Efficiency Extraction of Pantoea alhagi Exopolysaccharides Driven by pH-Related Changes in the Envelope Structure |
title | High-Efficiency Extraction of Pantoea alhagi Exopolysaccharides Driven by pH-Related Changes in the Envelope Structure |
title_full | High-Efficiency Extraction of Pantoea alhagi Exopolysaccharides Driven by pH-Related Changes in the Envelope Structure |
title_fullStr | High-Efficiency Extraction of Pantoea alhagi Exopolysaccharides Driven by pH-Related Changes in the Envelope Structure |
title_full_unstemmed | High-Efficiency Extraction of Pantoea alhagi Exopolysaccharides Driven by pH-Related Changes in the Envelope Structure |
title_short | High-Efficiency Extraction of Pantoea alhagi Exopolysaccharides Driven by pH-Related Changes in the Envelope Structure |
title_sort | high-efficiency extraction of pantoea alhagi exopolysaccharides driven by ph-related changes in the envelope structure |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9657395/ https://www.ncbi.nlm.nih.gov/pubmed/36364036 http://dx.doi.org/10.3390/molecules27217209 |
work_keys_str_mv | AT mayuhang highefficiencyextractionofpantoeaalhagiexopolysaccharidesdrivenbyphrelatedchangesintheenvelopestructure AT sunliang highefficiencyextractionofpantoeaalhagiexopolysaccharidesdrivenbyphrelatedchangesintheenvelopestructure AT wangrui highefficiencyextractionofpantoeaalhagiexopolysaccharidesdrivenbyphrelatedchangesintheenvelopestructure AT guyian highefficiencyextractionofpantoeaalhagiexopolysaccharidesdrivenbyphrelatedchangesintheenvelopestructure AT xuhong highefficiencyextractionofpantoeaalhagiexopolysaccharidesdrivenbyphrelatedchangesintheenvelopestructure AT leipeng highefficiencyextractionofpantoeaalhagiexopolysaccharidesdrivenbyphrelatedchangesintheenvelopestructure |