Cargando…
Synthesis and Characterization of High Entropy Alloy 23Fe-21Cr-18Ni-20Ti-18Mn for Electrochemical Sensor Applications
High entropy alloys (HEA) are one of the modern-era alloys accelerating with greater velocity because of their excellent properties and different applications. In the present paper, we have successfully fabricated HEA (23Fe-21Cr-18Ni-20Ti-18Mn) powders by ball milling the elemental Fe, Cr, Ni, Ti, a...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9657540/ https://www.ncbi.nlm.nih.gov/pubmed/36363181 http://dx.doi.org/10.3390/ma15217591 |
_version_ | 1784829723134656512 |
---|---|
author | Rajendrachari, Shashanka Adimule, Vinayak Gulen, Mahir Khosravi, Farshid Somashekharappa, Kiran Kenchappa |
author_facet | Rajendrachari, Shashanka Adimule, Vinayak Gulen, Mahir Khosravi, Farshid Somashekharappa, Kiran Kenchappa |
author_sort | Rajendrachari, Shashanka |
collection | PubMed |
description | High entropy alloys (HEA) are one of the modern-era alloys accelerating with greater velocity because of their excellent properties and different applications. In the present paper, we have successfully fabricated HEA (23Fe-21Cr-18Ni-20Ti-18Mn) powders by ball milling the elemental Fe, Cr, Ni, Ti, and Mn powders for 15 h. The advancement of the milling process and phase transformation of HEAs were studied by using X-ray diffraction (XRD) and scanning electron microscope (SEM). The crystallite size and the lattice strain of the HEA were calculated by using the Williamson-Hall (W-H) equation and the values were found to be 7 nm and 0.0176%, respectively. Similarly, the true lattice parameter was calculated using the Nelson–Riley (N-R) extrapolation method, and the value was found to be 3.544 Å. We have successfully investigated the electrochemical response of 15 h ball milled 23Fe-21Cr-18Ni-20Ti-18Mn HEA powders to determine the ascorbic acid (AA) using cyclic voltammetry. We have modified the carbon paste electrode with ball milled HEA of concentrations 0, 2, 4, 6, 8, and 10 mg, and among them, 8 mg HEA modified carbon paste electrode (HEA-MCPE) depicted the highest current sensitivity. We reported the effect of modifier concentration, analyte concentration, scan rate, and pH on the oxidation peak of AA. The electrochemical active surface area of carbon paste and MCPE was calculated using the Nernst equation and the values were found to be 0.0014 cm(2) and 0.0027 cm(2), respectively. The fabricated HEA-MCPE showed excellent current sensitivity, stability, anti-fouling, and selectivity. |
format | Online Article Text |
id | pubmed-9657540 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-96575402022-11-15 Synthesis and Characterization of High Entropy Alloy 23Fe-21Cr-18Ni-20Ti-18Mn for Electrochemical Sensor Applications Rajendrachari, Shashanka Adimule, Vinayak Gulen, Mahir Khosravi, Farshid Somashekharappa, Kiran Kenchappa Materials (Basel) Article High entropy alloys (HEA) are one of the modern-era alloys accelerating with greater velocity because of their excellent properties and different applications. In the present paper, we have successfully fabricated HEA (23Fe-21Cr-18Ni-20Ti-18Mn) powders by ball milling the elemental Fe, Cr, Ni, Ti, and Mn powders for 15 h. The advancement of the milling process and phase transformation of HEAs were studied by using X-ray diffraction (XRD) and scanning electron microscope (SEM). The crystallite size and the lattice strain of the HEA were calculated by using the Williamson-Hall (W-H) equation and the values were found to be 7 nm and 0.0176%, respectively. Similarly, the true lattice parameter was calculated using the Nelson–Riley (N-R) extrapolation method, and the value was found to be 3.544 Å. We have successfully investigated the electrochemical response of 15 h ball milled 23Fe-21Cr-18Ni-20Ti-18Mn HEA powders to determine the ascorbic acid (AA) using cyclic voltammetry. We have modified the carbon paste electrode with ball milled HEA of concentrations 0, 2, 4, 6, 8, and 10 mg, and among them, 8 mg HEA modified carbon paste electrode (HEA-MCPE) depicted the highest current sensitivity. We reported the effect of modifier concentration, analyte concentration, scan rate, and pH on the oxidation peak of AA. The electrochemical active surface area of carbon paste and MCPE was calculated using the Nernst equation and the values were found to be 0.0014 cm(2) and 0.0027 cm(2), respectively. The fabricated HEA-MCPE showed excellent current sensitivity, stability, anti-fouling, and selectivity. MDPI 2022-10-28 /pmc/articles/PMC9657540/ /pubmed/36363181 http://dx.doi.org/10.3390/ma15217591 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Rajendrachari, Shashanka Adimule, Vinayak Gulen, Mahir Khosravi, Farshid Somashekharappa, Kiran Kenchappa Synthesis and Characterization of High Entropy Alloy 23Fe-21Cr-18Ni-20Ti-18Mn for Electrochemical Sensor Applications |
title | Synthesis and Characterization of High Entropy Alloy 23Fe-21Cr-18Ni-20Ti-18Mn for Electrochemical Sensor Applications |
title_full | Synthesis and Characterization of High Entropy Alloy 23Fe-21Cr-18Ni-20Ti-18Mn for Electrochemical Sensor Applications |
title_fullStr | Synthesis and Characterization of High Entropy Alloy 23Fe-21Cr-18Ni-20Ti-18Mn for Electrochemical Sensor Applications |
title_full_unstemmed | Synthesis and Characterization of High Entropy Alloy 23Fe-21Cr-18Ni-20Ti-18Mn for Electrochemical Sensor Applications |
title_short | Synthesis and Characterization of High Entropy Alloy 23Fe-21Cr-18Ni-20Ti-18Mn for Electrochemical Sensor Applications |
title_sort | synthesis and characterization of high entropy alloy 23fe-21cr-18ni-20ti-18mn for electrochemical sensor applications |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9657540/ https://www.ncbi.nlm.nih.gov/pubmed/36363181 http://dx.doi.org/10.3390/ma15217591 |
work_keys_str_mv | AT rajendracharishashanka synthesisandcharacterizationofhighentropyalloy23fe21cr18ni20ti18mnforelectrochemicalsensorapplications AT adimulevinayak synthesisandcharacterizationofhighentropyalloy23fe21cr18ni20ti18mnforelectrochemicalsensorapplications AT gulenmahir synthesisandcharacterizationofhighentropyalloy23fe21cr18ni20ti18mnforelectrochemicalsensorapplications AT khosravifarshid synthesisandcharacterizationofhighentropyalloy23fe21cr18ni20ti18mnforelectrochemicalsensorapplications AT somashekharappakirankenchappa synthesisandcharacterizationofhighentropyalloy23fe21cr18ni20ti18mnforelectrochemicalsensorapplications |