Cargando…
Vegetation Changing Patterns and Its Sensitivity to Climate Variability across Seven Major Watersheds in China
Climate changes have profound impacts on vegetation and further alter hydrological processes through transpiration, interception, and evaporation. This study investigated vegetation’s changing patterns and its sensitivity to climate variability across seven major watersheds in China based on a hybri...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9657582/ https://www.ncbi.nlm.nih.gov/pubmed/36360794 http://dx.doi.org/10.3390/ijerph192113916 |
_version_ | 1784829733670748160 |
---|---|
author | Wang, Qin Ju, Qin Wang, Yueyang Shao, Quanxi Zhang, Rongrong Liu, Yanli Hao, Zhenchun |
author_facet | Wang, Qin Ju, Qin Wang, Yueyang Shao, Quanxi Zhang, Rongrong Liu, Yanli Hao, Zhenchun |
author_sort | Wang, Qin |
collection | PubMed |
description | Climate changes have profound impacts on vegetation and further alter hydrological processes through transpiration, interception, and evaporation. This study investigated vegetation’s changing patterns and its sensitivity to climate variability across seven major watersheds in China based on a hybrid regionalization approach and a novel, empirical index—Vegetation Sensitivity Index (VSI). Vegetation showed linearly increasing trends in most of the seven watersheds, while decreases in vegetation were mostly found in the source regions of the Yangtze River Basin (YZRB) and Yellow River Basin (YRB), the forest and grassland areas of the Songhua River Basin (SHRB) and Liao River Basin (LRB), the Yangtze River Delta, and the Pearl River Delta during the growing season. The selected watersheds can be categorized into 11 sub-regions, and the regionalization result was consistent with the topography and vegetation types; the characteristics of vegetation dynamics were more homogeneous among sub-regions. Vegetation types such as forests and shrubland in the central parts of the YZRB were relatively more vulnerable to climate variations than the grasslands and alpine meadows and tundra (AMT) in the source regions of the YZRB and YRB and the Loess Plateau of the YRB. In arid and semi-arid regions, precipitation had a profound impact on vegetation, while, at low latitudes, solar radiation was the main controlling factor. Such comprehensive investigations of the vegetation–climate relationship patterns across various watersheds are expected to provide a foundation for the exploration of future climate change impacts on ecosystems at the watershed scale. |
format | Online Article Text |
id | pubmed-9657582 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-96575822022-11-15 Vegetation Changing Patterns and Its Sensitivity to Climate Variability across Seven Major Watersheds in China Wang, Qin Ju, Qin Wang, Yueyang Shao, Quanxi Zhang, Rongrong Liu, Yanli Hao, Zhenchun Int J Environ Res Public Health Article Climate changes have profound impacts on vegetation and further alter hydrological processes through transpiration, interception, and evaporation. This study investigated vegetation’s changing patterns and its sensitivity to climate variability across seven major watersheds in China based on a hybrid regionalization approach and a novel, empirical index—Vegetation Sensitivity Index (VSI). Vegetation showed linearly increasing trends in most of the seven watersheds, while decreases in vegetation were mostly found in the source regions of the Yangtze River Basin (YZRB) and Yellow River Basin (YRB), the forest and grassland areas of the Songhua River Basin (SHRB) and Liao River Basin (LRB), the Yangtze River Delta, and the Pearl River Delta during the growing season. The selected watersheds can be categorized into 11 sub-regions, and the regionalization result was consistent with the topography and vegetation types; the characteristics of vegetation dynamics were more homogeneous among sub-regions. Vegetation types such as forests and shrubland in the central parts of the YZRB were relatively more vulnerable to climate variations than the grasslands and alpine meadows and tundra (AMT) in the source regions of the YZRB and YRB and the Loess Plateau of the YRB. In arid and semi-arid regions, precipitation had a profound impact on vegetation, while, at low latitudes, solar radiation was the main controlling factor. Such comprehensive investigations of the vegetation–climate relationship patterns across various watersheds are expected to provide a foundation for the exploration of future climate change impacts on ecosystems at the watershed scale. MDPI 2022-10-26 /pmc/articles/PMC9657582/ /pubmed/36360794 http://dx.doi.org/10.3390/ijerph192113916 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Wang, Qin Ju, Qin Wang, Yueyang Shao, Quanxi Zhang, Rongrong Liu, Yanli Hao, Zhenchun Vegetation Changing Patterns and Its Sensitivity to Climate Variability across Seven Major Watersheds in China |
title | Vegetation Changing Patterns and Its Sensitivity to Climate Variability across Seven Major Watersheds in China |
title_full | Vegetation Changing Patterns and Its Sensitivity to Climate Variability across Seven Major Watersheds in China |
title_fullStr | Vegetation Changing Patterns and Its Sensitivity to Climate Variability across Seven Major Watersheds in China |
title_full_unstemmed | Vegetation Changing Patterns and Its Sensitivity to Climate Variability across Seven Major Watersheds in China |
title_short | Vegetation Changing Patterns and Its Sensitivity to Climate Variability across Seven Major Watersheds in China |
title_sort | vegetation changing patterns and its sensitivity to climate variability across seven major watersheds in china |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9657582/ https://www.ncbi.nlm.nih.gov/pubmed/36360794 http://dx.doi.org/10.3390/ijerph192113916 |
work_keys_str_mv | AT wangqin vegetationchangingpatternsanditssensitivitytoclimatevariabilityacrosssevenmajorwatershedsinchina AT juqin vegetationchangingpatternsanditssensitivitytoclimatevariabilityacrosssevenmajorwatershedsinchina AT wangyueyang vegetationchangingpatternsanditssensitivitytoclimatevariabilityacrosssevenmajorwatershedsinchina AT shaoquanxi vegetationchangingpatternsanditssensitivitytoclimatevariabilityacrosssevenmajorwatershedsinchina AT zhangrongrong vegetationchangingpatternsanditssensitivitytoclimatevariabilityacrosssevenmajorwatershedsinchina AT liuyanli vegetationchangingpatternsanditssensitivitytoclimatevariabilityacrosssevenmajorwatershedsinchina AT haozhenchun vegetationchangingpatternsanditssensitivitytoclimatevariabilityacrosssevenmajorwatershedsinchina |