Cargando…
HLGNN-MDA: Heuristic Learning Based on Graph Neural Networks for miRNA–Disease Association Prediction
Identifying disease-related miRNAs can improve the understanding of complex diseases. However, experimentally finding the association between miRNAs and diseases is expensive in terms of time and resources. The computational screening of reliable miRNA–disease associations has thus become a necessar...
Autores principales: | Yu, Liang, Ju, Bingyi, Ren, Shujie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9657597/ https://www.ncbi.nlm.nih.gov/pubmed/36361945 http://dx.doi.org/10.3390/ijms232113155 |
Ejemplares similares
-
iMDA-BN: Identification of miRNA-disease associations based on the biological network and graph embedding algorithm
por: Zheng, Kai, et al.
Publicado: (2020) -
GraphTar: applying word2vec and graph neural networks to miRNA target prediction
por: Przybyszewski, Jan, et al.
Publicado: (2023) -
GCNCMI: A Graph Convolutional Neural Network Approach for Predicting circRNA-miRNA Interactions
por: He, Jie, et al.
Publicado: (2022) -
Faster heuristics for graph burning
por: Gautam, Rahul Kumar, et al.
Publicado: (2021) -
KS-CMI: A circRNA-miRNA interaction prediction method based on the signed graph neural network and denoising autoencoder
por: Wang, Xin-Fei, et al.
Publicado: (2023)