Cargando…

Clustering-Driven DGS-Based Micro-Doppler Feature Extraction for Automatic Dynamic Hand Gesture Recognition

We propose in this work a dynamic group sparsity (DGS) based time-frequency feature extraction method for dynamic hand gesture recognition (HGR) using millimeter-wave radar sensors. Micro-Doppler signatures of hand gestures show both sparse and structured characteristics in time-frequency domain, bu...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Chengjin, Wang, Zehao, An, Qiang, Li, Shiyong, Hoorfar, Ahmad, Kou, Chenxiao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9657879/
https://www.ncbi.nlm.nih.gov/pubmed/36366232
http://dx.doi.org/10.3390/s22218535
Descripción
Sumario:We propose in this work a dynamic group sparsity (DGS) based time-frequency feature extraction method for dynamic hand gesture recognition (HGR) using millimeter-wave radar sensors. Micro-Doppler signatures of hand gestures show both sparse and structured characteristics in time-frequency domain, but previous study only focus on sparsity. We firstly introduce the structured prior when modeling the micro-Doppler signatures in this work to further enhance the features of hand gestures. The time-frequency distributions of dynamic hand gestures are first modeled using a dynamic group sparse model. A DGS-Subspace Pursuit (DGS-SP) algorithm is then utilized to extract the corresponding features. Finally, the support vector machine (SVM) classifier is employed to realize the dynamic HGR based on the extracted group sparse micro-Doppler features. The experiment shows that the proposed method achieved 3.3% recognition accuracy improvement over the sparsity-based method and has a better recognition accuracy than CNN based method in small dataset.