Cargando…
Clustering-Driven DGS-Based Micro-Doppler Feature Extraction for Automatic Dynamic Hand Gesture Recognition
We propose in this work a dynamic group sparsity (DGS) based time-frequency feature extraction method for dynamic hand gesture recognition (HGR) using millimeter-wave radar sensors. Micro-Doppler signatures of hand gestures show both sparse and structured characteristics in time-frequency domain, bu...
Autores principales: | Zhang, Chengjin, Wang, Zehao, An, Qiang, Li, Shiyong, Hoorfar, Ahmad, Kou, Chenxiao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9657879/ https://www.ncbi.nlm.nih.gov/pubmed/36366232 http://dx.doi.org/10.3390/s22218535 |
Ejemplares similares
-
Implementing a Hand Gesture Recognition System Based on Range-Doppler Map
por: Jhaung, Yu-Chiao, et al.
Publicado: (2022) -
Emotions affect the recognition of hand gestures
por: Vicario, Carmelo M., et al.
Publicado: (2013) -
Robust hand gesture recognition for robotic hand control
por: Chaudhary, Ankit
Publicado: (2017) -
COLLABORATION AGREEMENT KN1874/DGS
por: THE EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH, CERN, et al.
Publicado: (2011) -
Project Administration Agreement KN2190/DGS
por: The European Organization for Nuclear Research, CERN, et al.
Publicado: (2013)