Cargando…

A Robust Parallel Initialization Method for Monocular Visual-Inertial SLAM

In order to improve the initialization robustness of visual inertial SLAM, the complementarity of the optical flow method and the feature-based method can be used in vision data processing. The parallel initialization method is proposed, where the optical flow inertial initialization and the monocul...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhong, Min, Yao, Yiqing, Xu, Xiaosu, Wei, Hongyu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9657975/
https://www.ncbi.nlm.nih.gov/pubmed/36366008
http://dx.doi.org/10.3390/s22218307
Descripción
Sumario:In order to improve the initialization robustness of visual inertial SLAM, the complementarity of the optical flow method and the feature-based method can be used in vision data processing. The parallel initialization method is proposed, where the optical flow inertial initialization and the monocular feature-based initialization are carried out at the same time. After the initializations, the state estimation results are jointly optimized by bundle adjustment. The proposed method retains more mapping information, and correspondingly is more adaptable to the initialization scene. It is found that the initialization map constructed by the proposed method features a comparable accuracy to the one constructed by ORB-SLAM3 in monocular inertial mode. Since the online extrinsic parameter estimation can be realized by the proposed method, it is considered better than ORB-SLAM3 in the aspect of portability. By the experiments performed on the benchmark dataset EuRoC, the effectiveness and robustness of the proposed method are validated.