Cargando…

Pilot Validation Study of Inertial Measurement Units and Markerless Methods for 3D Neck and Trunk Kinematics during a Simulated Surgery Task

Surgeons are at high risk for developing musculoskeletal symptoms (MSS), like neck and back pain. Quantitative analysis of 3D neck and trunk movements during surgery can help to develop preventive devices such as exoskeletons. Inertial Measurement Units (IMU) and markerless motion capture methods ar...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Ce, Greve, Christian, Verkerke, Gijsbertus Jacob, Roossien, Charlotte Christina, Houdijk, Han, Hijmans, Juha M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9658075/
https://www.ncbi.nlm.nih.gov/pubmed/36366040
http://dx.doi.org/10.3390/s22218342
Descripción
Sumario:Surgeons are at high risk for developing musculoskeletal symptoms (MSS), like neck and back pain. Quantitative analysis of 3D neck and trunk movements during surgery can help to develop preventive devices such as exoskeletons. Inertial Measurement Units (IMU) and markerless motion capture methods are allowed in the operating room (OR) and are a good alternative for bulky optoelectronic systems. We aim to validate IMU and markerless methods against an optoelectronic system during a simulated surgery task. Intraclass correlation coefficient (ICC (2,1)), root mean square error (RMSE), range of motion (ROM) difference and Bland–Altman plots were used for evaluating both methods. The IMU-based motion analysis showed good-to-excellent (ICC 0.80–0.97) agreement with the gold standard within 2.3 to 3.9 degrees RMSE accuracy during simulated surgery tasks. The markerless method shows 5.5 to 8.7 degrees RMSE accuracy (ICC 0.31–0.70). Therefore, the IMU method is recommended over the markerless motion capture.