Cargando…
Few-Shot Fine-Grained Forest Fire Smoke Recognition Based on Metric Learning
To date, most existing forest fire smoke detection methods rely on coarse-grained identification, which only distinguishes between smoke and non-smoke. Thus, non-fire smoke and fire smoke are treated the same in these methods, resulting in false alarms within the smoke classes. The fine-grained iden...
Autores principales: | Sun, Bingjian, Cheng, Pengle, Huang, Ying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9658153/ https://www.ncbi.nlm.nih.gov/pubmed/36366081 http://dx.doi.org/10.3390/s22218383 |
Ejemplares similares
-
Few-Shot Fine-Grained Image Classification via GNN
por: Zhou, Xiangyu, et al.
Publicado: (2022) -
Feature fusion network based on few-shot fine-grained classification
por: Yang, Yajie, et al.
Publicado: (2023) -
Few-Shot Rolling Bearing Fault Diagnosis with Metric-Based Meta Learning
por: Wang, Sihan, et al.
Publicado: (2020) -
Few-shot cotton leaf spots disease classification based on metric learning
por: Liang, Xihuizi
Publicado: (2021) -
Few-Shot Learning for Image-Based Nonintrusive Appliance Signal Recognition
por: Matindife, L., et al.
Publicado: (2022)