Cargando…

Anionic Copolymers with Different Charge Densities for Regulating the Properties of Cement Pastes

Self-compacting concrete (SCC) is an extremely flowable concrete, which increases the probability of segregation and bleeding. Viscosity-modifying admixtures (VMAs) have been developed to improve the stability of SCC. Synthetic polymer VMAs have excellent water solubility and stability, and can be e...

Descripción completa

Detalles Bibliográficos
Autores principales: Gao, Nanxiao, Chen, Jian, Qiao, Min, Shan, Guangcheng, Wu, Jingzhi, Ran, Qianping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9658162/
https://www.ncbi.nlm.nih.gov/pubmed/36363219
http://dx.doi.org/10.3390/ma15217629
Descripción
Sumario:Self-compacting concrete (SCC) is an extremely flowable concrete, which increases the probability of segregation and bleeding. Viscosity-modifying admixtures (VMAs) have been developed to improve the stability of SCC. Synthetic polymer VMAs have excellent water solubility and stability, and can be easily chemically prepared and modified. In this work, a series of copolymers based on anionic 2-acrylamido-2-methyl-propanesulfonic acid (AMPS) and nonionic N, N-dimethyl acrylamide (DMAA), with similar molecular weights but different charge densities, were prepared. The effect of the charge density of the anionic polymers on the fluidity, rheological property, and adsorption behavior of the cement pastes was investigated. The action mechanism of the polymers was discussed. The results indicate that the charge density of anionic polymer VMAs is of great significance for the development of cost-effective SCCs with good rheological properties.