Cargando…
Noninvasive Detection of Bacterial Infection in Children Using Piezoelectric E-Nose
Currently, antibiotics are often prescribed to children without reason due to the inability to quickly establish the presence of a bacterial etiology of the disease. One way to obtain additional diagnostic information quickly is to study the volatile metabolome of biosamples using arrays of sensors....
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9658202/ https://www.ncbi.nlm.nih.gov/pubmed/36366200 http://dx.doi.org/10.3390/s22218496 |
_version_ | 1784829892495409152 |
---|---|
author | Kuchmenko, Tatiana Menzhulina, Daria Shuba, Anastasiia |
author_facet | Kuchmenko, Tatiana Menzhulina, Daria Shuba, Anastasiia |
author_sort | Kuchmenko, Tatiana |
collection | PubMed |
description | Currently, antibiotics are often prescribed to children without reason due to the inability to quickly establish the presence of a bacterial etiology of the disease. One way to obtain additional diagnostic information quickly is to study the volatile metabolome of biosamples using arrays of sensors. The goal of this work was to assess the possibility of using an array of chemical sensors with various sensitive coatings to determine the presence of a bacterial infection in children by analyzing the equilibrium gas phase (EGP) of urine samples. The EGP of 90 urine samples from children with and without a bacterial infection (urinary tract infection, soft tissue infection) was studied on the “MAG-8” device with seven piezoelectric sensors in a hospital. General urine analysis with sediment microscopy was performed using a Uriscan Pro analyzer and using an Olympus CX31 microscope. After surgical removal of the source of inflammation, the microbiological studies of the biomaterial were performed to determine the presence and type of the pathogen. The most informative output data of an array of sensors have been established for diagnosing bacterial pathology. Regression models were built to predict the presence of a bacterial infection in children with an error of no more than 15%. An indicator of infection is proposed to predict the presence of a bacterial infection in children with a high sensitivity of 96%. |
format | Online Article Text |
id | pubmed-9658202 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-96582022022-11-15 Noninvasive Detection of Bacterial Infection in Children Using Piezoelectric E-Nose Kuchmenko, Tatiana Menzhulina, Daria Shuba, Anastasiia Sensors (Basel) Article Currently, antibiotics are often prescribed to children without reason due to the inability to quickly establish the presence of a bacterial etiology of the disease. One way to obtain additional diagnostic information quickly is to study the volatile metabolome of biosamples using arrays of sensors. The goal of this work was to assess the possibility of using an array of chemical sensors with various sensitive coatings to determine the presence of a bacterial infection in children by analyzing the equilibrium gas phase (EGP) of urine samples. The EGP of 90 urine samples from children with and without a bacterial infection (urinary tract infection, soft tissue infection) was studied on the “MAG-8” device with seven piezoelectric sensors in a hospital. General urine analysis with sediment microscopy was performed using a Uriscan Pro analyzer and using an Olympus CX31 microscope. After surgical removal of the source of inflammation, the microbiological studies of the biomaterial were performed to determine the presence and type of the pathogen. The most informative output data of an array of sensors have been established for diagnosing bacterial pathology. Regression models were built to predict the presence of a bacterial infection in children with an error of no more than 15%. An indicator of infection is proposed to predict the presence of a bacterial infection in children with a high sensitivity of 96%. MDPI 2022-11-04 /pmc/articles/PMC9658202/ /pubmed/36366200 http://dx.doi.org/10.3390/s22218496 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Kuchmenko, Tatiana Menzhulina, Daria Shuba, Anastasiia Noninvasive Detection of Bacterial Infection in Children Using Piezoelectric E-Nose |
title | Noninvasive Detection of Bacterial Infection in Children Using Piezoelectric E-Nose |
title_full | Noninvasive Detection of Bacterial Infection in Children Using Piezoelectric E-Nose |
title_fullStr | Noninvasive Detection of Bacterial Infection in Children Using Piezoelectric E-Nose |
title_full_unstemmed | Noninvasive Detection of Bacterial Infection in Children Using Piezoelectric E-Nose |
title_short | Noninvasive Detection of Bacterial Infection in Children Using Piezoelectric E-Nose |
title_sort | noninvasive detection of bacterial infection in children using piezoelectric e-nose |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9658202/ https://www.ncbi.nlm.nih.gov/pubmed/36366200 http://dx.doi.org/10.3390/s22218496 |
work_keys_str_mv | AT kuchmenkotatiana noninvasivedetectionofbacterialinfectioninchildrenusingpiezoelectricenose AT menzhulinadaria noninvasivedetectionofbacterialinfectioninchildrenusingpiezoelectricenose AT shubaanastasiia noninvasivedetectionofbacterialinfectioninchildrenusingpiezoelectricenose |