Cargando…
Optimizing Face Recognition Inference with a Collaborative Edge–Cloud Network
The rapid development of deep-learning-based edge artificial intelligence applications and their data-driven nature has led to several research issues. One key issue is the collaboration of the edge and cloud to optimize such applications by increasing inference speed and reducing latency. Some rese...
Autores principales: | Oroceo, Paul P., Kim, Jeong-In, Caliwag, Ej Miguel Francisco, Kim, Sang-Ho, Lim, Wansu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9658311/ https://www.ncbi.nlm.nih.gov/pubmed/36366070 http://dx.doi.org/10.3390/s22218371 |
Ejemplares similares
-
Light-FER: A Lightweight Facial Emotion Recognition System on Edge Devices
por: Pascual, Alexander M., et al.
Publicado: (2022) -
BBNet: A Novel Convolutional Neural Network Structure in Edge-Cloud Collaborative Inference
por: Zhou, Hongbo, et al.
Publicado: (2021) -
Edge and Cloud Collaborative Entity Recommendation Method towards the IoT Search
por: Wang, Ruyan, et al.
Publicado: (2020) -
Edge-Cloud Collaborative Defense against Backdoor Attacks in Federated Learning
por: Yang, Jie, et al.
Publicado: (2023) -
Independent component analysis of edge information for face recognition
por: Karande, Kailash Jagannath, et al.
Publicado: (2013)