Cargando…
Learning Optimal Time-Frequency-Spatial Features by the CiSSA-CSP Method for Motor Imagery EEG Classification
The common spatial pattern (CSP) is a popular method in feature extraction for motor imagery (MI) electroencephalogram (EEG) classification in brain–computer interface (BCI) systems. However, combining temporal and spectral information in the CSP-based spatial features is still a challenging issue,...
Autores principales: | Hu, Hai, Pu, Zihang, Li, Haohan, Liu, Zhexian, Wang, Peng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9658317/ https://www.ncbi.nlm.nih.gov/pubmed/36366225 http://dx.doi.org/10.3390/s22218526 |
Ejemplares similares
-
The CSP-Based New Features Plus Non-Convex Log Sparse Feature Selection for Motor Imagery EEG Classification
por: Zhang, Shaorong, et al.
Publicado: (2020) -
Correlation-based common spatial pattern (CCSP): A novel extension of CSP for classification of motor imagery signal
por: Darvish ghanbar, Khatereh, et al.
Publicado: (2021) -
Spatial-Frequency Feature Learning and Classification of Motor Imagery EEG Based on Deep Convolution Neural Network
por: Miao, Minmin, et al.
Publicado: (2020) -
Motor Imagery EEG Classification Using Capsule Networks†
por: Ha, Kwon-Woo, et al.
Publicado: (2019) -
Local Temporal Correlation Common Spatial Patterns for Single Trial EEG Classification during Motor Imagery
por: Zhang, Rui, et al.
Publicado: (2013)