Cargando…

Optimization of Bit Allocation for Spatial Multiplexing in MIMO VLC System with Smartphones

This paper focuses on the hardware components of smartphones, namely, the use of displays and cameras in mobile devices as transmitters and receivers to establish a near-field multiple-input–multiple-output (MIMO) visible light communication (VLC) system. Based on the relationship between the graysc...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Chang-Ming, Li, Bo-Hung, Chiang, Chang-Chin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9658334/
https://www.ncbi.nlm.nih.gov/pubmed/36365812
http://dx.doi.org/10.3390/s22218117
Descripción
Sumario:This paper focuses on the hardware components of smartphones, namely, the use of displays and cameras in mobile devices as transmitters and receivers to establish a near-field multiple-input–multiple-output (MIMO) visible light communication (VLC) system. Based on the relationship between the grayscale values of transmitted and received signals, the physical channel responses are detected and approximated with a high-order regression to obtain the channel gain. With the constraint of bit numbers in the MIMO VLC system, an integer-type water-filling scheme was designed for bit allocation to improve transmission efficiency. The physical examinations show that bit error rate (BER) reduction can be 26.4% with Gaussian noise of 30 dB and detected channel gain compared with the equal bit allocation. The optimization of the simulation was confirmed with the bit assignments in real cases.