Cargando…
Heterogeneity and Differentiation Trajectories of Infiltrating CD8+ T Cells in Lung Adenocarcinoma
SIMPLE SUMMARY: CD8+ T cells infiltrating the tumor microenvironment (TME) of lung adenocarcinoma (LUAD) play a crucial role in establishing anti-tumor immunotherapy. The number of CD8+ T cells affects the treatment response, but their functional status plays a more critical role, and this global la...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9658355/ https://www.ncbi.nlm.nih.gov/pubmed/36358600 http://dx.doi.org/10.3390/cancers14215183 |
Sumario: | SIMPLE SUMMARY: CD8+ T cells infiltrating the tumor microenvironment (TME) of lung adenocarcinoma (LUAD) play a crucial role in establishing anti-tumor immunotherapy. The number of CD8+ T cells affects the treatment response, but their functional status plays a more critical role, and this global landscape is still unclear. We divided CD8+ T cells into ten subsets by analyzing a LUAD single-cell dataset. The dynamic process of cell differentiation and functional exhaustion of CD8+ T cells was further discussed, and potential biomarkers in this process were screened. This study deepens the understanding of the heterogeneity of infiltrating CD8+ T cells in LUAD, and the prognostic marker provides a new target for targeted therapy and immunotherapy in LUAD patients. ABSTRACT: CD8+ T cells infiltrating the tumor microenvironment (TME) of lung adenocarcinoma (LUAD) are critical for establishing antitumor immunity. Nevertheless, the global landscape of their numbers, functional status, and differentiation trajectories remains unclear. In the single-cell RNA-sequencing (scRNA-seq) dataset GSE131907 of LUAD, the CD8+T cells were selected for TSNE clustering, and the results showed that they could be divided into ten subsets. The cell differentiation trajectory showed the presence of abundant transition-state CD8+ T cells during the differentiation of naive-like CD8+ T cells into cytotoxic CD8+ T cells and exhausted CD8+ T cells. The differentially expressed marker genes among subsets were used to construct the gene signature matrix, and the proportion of each subset was identified and calculated in The Cancer Genome Atlas (TCGA) samples. Survival analysis showed that the higher the proportion of the exhausted CD8+ T lymphocyte (ETL) subset, the shorter the overall survival (OS) time of LUAD patients (p = 0.0098). A total of 61 genes were obtained by intersecting the differentially expressed genes (DEGs) of the ETL subset, and the DEGs of the TCGA samples were divided into a high and a low group according to the proportion of the ETL subset. Through protein interaction network analysis and survival analysis, four hub genes that can significantly affect the prognosis of LUAD patients were finally screened, and RT-qPCR and Western blot verified the differential expression of the above four genes. Our study further deepens the understanding of the heterogeneity and functional exhaustion of infiltrating CD8+ T cells in LUAD. The screened prognostic marker genes provide potential targets for targeted therapy and immunotherapy in LUAD patients. |
---|