Cargando…
Response of Antibiotic Resistance Genes and Related Microorganisms to Arsenic during Vermicomposting of Cow Dung
Antibiotic resistance pollution in livestock manure is a persistent issue that has drawn public attention. Vermicomposting is an ecofriendly biological process that can render livestock manure harmless and resourceful. However, little is known about the impact of vermicomposting on antibiotic resist...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9658359/ https://www.ncbi.nlm.nih.gov/pubmed/36361352 http://dx.doi.org/10.3390/ijerph192114475 |
_version_ | 1784829931608342528 |
---|---|
author | Li, Zijun Chen, Chen Zhang, Keqiang Zhang, Zulin Zhao, Ran Han, Bingjun Yang, Fengxia Ding, Yongzhen |
author_facet | Li, Zijun Chen, Chen Zhang, Keqiang Zhang, Zulin Zhao, Ran Han, Bingjun Yang, Fengxia Ding, Yongzhen |
author_sort | Li, Zijun |
collection | PubMed |
description | Antibiotic resistance pollution in livestock manure is a persistent issue that has drawn public attention. Vermicomposting is an ecofriendly biological process that can render livestock manure harmless and resourceful. However, little is known about the impact of vermicomposting on antibiotic resistance in livestock manure under stress caused by potentially toxic arsenic levels. Herein, lab-scale vermicomposting was performed to comprehensively evaluate the shift in antibiotic resistance genes (ARGs) and related microorganisms in fresh earthworm casts as well as vermicompost product health (i.e., nutrient availability and enzyme activity) when they were fed on arsenic-contaminated cow manure. The results showed that the earthworms’ interaction with cow dung led to a significant reduction in ARG concentrations, especially for tetracycline ARGs (tet-ARGs), β-lactam ARGs (bla-ARGs), and quinolone ARGs (qnr-ARGs). However, arsenic significantly enhanced ARG accumulation in earthworm casts in a dose-dependent manner. Moreover, vermicomposting increased the percentage of Bacteroidota in the converted products. Furthermore, arsenic exposure at low concentrations promoted the proliferation of Proteobacteria, whereas high concentrations had little effect on Proteobacteria. Our study provides valuable insight into the changes in the antibiotic resistome and related microorganisms during vermicomposting of arsenic-amended cow manure, and it is crucial to explain the environmental impact of earthworms and improve our understanding of the reciprocal benefits of soil invertebrates. |
format | Online Article Text |
id | pubmed-9658359 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-96583592022-11-15 Response of Antibiotic Resistance Genes and Related Microorganisms to Arsenic during Vermicomposting of Cow Dung Li, Zijun Chen, Chen Zhang, Keqiang Zhang, Zulin Zhao, Ran Han, Bingjun Yang, Fengxia Ding, Yongzhen Int J Environ Res Public Health Article Antibiotic resistance pollution in livestock manure is a persistent issue that has drawn public attention. Vermicomposting is an ecofriendly biological process that can render livestock manure harmless and resourceful. However, little is known about the impact of vermicomposting on antibiotic resistance in livestock manure under stress caused by potentially toxic arsenic levels. Herein, lab-scale vermicomposting was performed to comprehensively evaluate the shift in antibiotic resistance genes (ARGs) and related microorganisms in fresh earthworm casts as well as vermicompost product health (i.e., nutrient availability and enzyme activity) when they were fed on arsenic-contaminated cow manure. The results showed that the earthworms’ interaction with cow dung led to a significant reduction in ARG concentrations, especially for tetracycline ARGs (tet-ARGs), β-lactam ARGs (bla-ARGs), and quinolone ARGs (qnr-ARGs). However, arsenic significantly enhanced ARG accumulation in earthworm casts in a dose-dependent manner. Moreover, vermicomposting increased the percentage of Bacteroidota in the converted products. Furthermore, arsenic exposure at low concentrations promoted the proliferation of Proteobacteria, whereas high concentrations had little effect on Proteobacteria. Our study provides valuable insight into the changes in the antibiotic resistome and related microorganisms during vermicomposting of arsenic-amended cow manure, and it is crucial to explain the environmental impact of earthworms and improve our understanding of the reciprocal benefits of soil invertebrates. MDPI 2022-11-04 /pmc/articles/PMC9658359/ /pubmed/36361352 http://dx.doi.org/10.3390/ijerph192114475 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Li, Zijun Chen, Chen Zhang, Keqiang Zhang, Zulin Zhao, Ran Han, Bingjun Yang, Fengxia Ding, Yongzhen Response of Antibiotic Resistance Genes and Related Microorganisms to Arsenic during Vermicomposting of Cow Dung |
title | Response of Antibiotic Resistance Genes and Related Microorganisms to Arsenic during Vermicomposting of Cow Dung |
title_full | Response of Antibiotic Resistance Genes and Related Microorganisms to Arsenic during Vermicomposting of Cow Dung |
title_fullStr | Response of Antibiotic Resistance Genes and Related Microorganisms to Arsenic during Vermicomposting of Cow Dung |
title_full_unstemmed | Response of Antibiotic Resistance Genes and Related Microorganisms to Arsenic during Vermicomposting of Cow Dung |
title_short | Response of Antibiotic Resistance Genes and Related Microorganisms to Arsenic during Vermicomposting of Cow Dung |
title_sort | response of antibiotic resistance genes and related microorganisms to arsenic during vermicomposting of cow dung |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9658359/ https://www.ncbi.nlm.nih.gov/pubmed/36361352 http://dx.doi.org/10.3390/ijerph192114475 |
work_keys_str_mv | AT lizijun responseofantibioticresistancegenesandrelatedmicroorganismstoarsenicduringvermicompostingofcowdung AT chenchen responseofantibioticresistancegenesandrelatedmicroorganismstoarsenicduringvermicompostingofcowdung AT zhangkeqiang responseofantibioticresistancegenesandrelatedmicroorganismstoarsenicduringvermicompostingofcowdung AT zhangzulin responseofantibioticresistancegenesandrelatedmicroorganismstoarsenicduringvermicompostingofcowdung AT zhaoran responseofantibioticresistancegenesandrelatedmicroorganismstoarsenicduringvermicompostingofcowdung AT hanbingjun responseofantibioticresistancegenesandrelatedmicroorganismstoarsenicduringvermicompostingofcowdung AT yangfengxia responseofantibioticresistancegenesandrelatedmicroorganismstoarsenicduringvermicompostingofcowdung AT dingyongzhen responseofantibioticresistancegenesandrelatedmicroorganismstoarsenicduringvermicompostingofcowdung |