Cargando…
Prediction of Anthocyanin Color Stability against Iron Co-Pigmentation by Surface-Enhanced Raman Spectroscopy
The color change resulting from anthocyanin and iron co-pigmentation has been a significant challenge for the food industry in the development of many iron-fortified foods. This present study aims to establish a quantitative model to predict the degree of color stability in the presence of dissolved...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9658423/ https://www.ncbi.nlm.nih.gov/pubmed/36360049 http://dx.doi.org/10.3390/foods11213436 |
Sumario: | The color change resulting from anthocyanin and iron co-pigmentation has been a significant challenge for the food industry in the development of many iron-fortified foods. This present study aims to establish a quantitative model to predict the degree of color stability in the presence of dissolved iron using surface-enhanced Raman spectroscopic (SERS) spectra. The SERS spectra of anthocyanin extracts from seven different plant sources were measured and analyzed by principal component analysis (PCA). Discrimination among different sources of anthocyanin was observed in the PCA plot. Different stability indexes, obtained by measuring both the color intensity stability and color hue stability of each sample, were established based on UV–vis analysis of anthocyanin at pH 3 and 6 with and without ferric sulfate. Partial least square (PLS) regression models were applied to establish the correlation between SERS spectra and stability indexes. The best PLS model was built based on the stability index calculated from the bathochromic shift (UV–vis spectral range: 380–750 nm) in pH3 buffer and the SERS spectra, achieving a root mean square error of prediction (RMSEP) of 2.16 nm and a correlation coefficient value (R(2)) of 0.98. In conclusion, the present study developed a feasible approach to predict the stability of anthocyanin colorants against iron co-pigmentation. The developed method and models can be used for fast screenings of raw ingredients in iron-fortified food products. |
---|