Cargando…

Performance of the Improved Priestley-Taylor Model for Simulating Evapotranspiration of Greenhouse Tomato at Different Growth Stages

Mastering crop evapotranspiration (ET) and improving the accuracy of ET simulation is critical for optimizing the irrigation schedule and saving water resources, particularly for crops cultivated in a greenhouse. Taking greenhouse-grown tomato under drip irrigation as an example, two weighing lysime...

Descripción completa

Detalles Bibliográficos
Autores principales: Gong, Xuewen, Bo, Guokui, Liu, Hao, Ge, Jiankun, Li, Xiaoming, Gao, Shikai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9658431/
https://www.ncbi.nlm.nih.gov/pubmed/36365409
http://dx.doi.org/10.3390/plants11212956
_version_ 1784829949415260160
author Gong, Xuewen
Bo, Guokui
Liu, Hao
Ge, Jiankun
Li, Xiaoming
Gao, Shikai
author_facet Gong, Xuewen
Bo, Guokui
Liu, Hao
Ge, Jiankun
Li, Xiaoming
Gao, Shikai
author_sort Gong, Xuewen
collection PubMed
description Mastering crop evapotranspiration (ET) and improving the accuracy of ET simulation is critical for optimizing the irrigation schedule and saving water resources, particularly for crops cultivated in a greenhouse. Taking greenhouse-grown tomato under drip irrigation as an example, two weighing lysimeters were used to monitor ET at two seasons (2019 and 2020), whilst meteorological factors inside the greenhouse were measured using an automatic weather station. Then the path analysis approach was employed to determine the main environmental control factors of ET. On this basis, an improved Priestley-Taylor (IPT) model was developed to simulate tomato ET at different growth stages by considering the influence of environmental changes on model parameters (e.g., leaf senescence coefficient, temperature constraint coefficient and soil evaporative water stress coefficient). Results showed that the average daily ET varied from 0.06 to 6.57 mm d(−1), which were ~0.98, ~2.58, ~3.70 and ~3.32 mm/d at the initial, development, middle and late stages, respectively, with the total ET over the whole growth stage of ~333.0 mm. Net solar radiation (R(n)) and vapor pressure deficit (VPD) were the direct influencing factors of ET, whereas air temperature (T(a)) was the limiting factor and wind speed (u(2)) had a little influence on ET. The order of correlation coefficients between meteorological factors and ET at two seasons was R(n) > VPD > T(a) > u(2). The IPT model can accurately simulate ET in hourly and daily scales. The root mean square error of hourly ET at four stages changed from 0.002 to 0.08 mm h(−1) and daily ET varied from 0.54 to 0.57 mm d(−1). The IPT coefficient was close to the recommended PT coefficient (1.26) when the average T(a) approaches 26 °C and LAI approaches 2.5 cm(2) cm(−2) in greenhouse conditions. Our results can provide a theoretical basis for further optimization of greenhouse crop irrigation schedules and improvement of water use efficiency.
format Online
Article
Text
id pubmed-9658431
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-96584312022-11-15 Performance of the Improved Priestley-Taylor Model for Simulating Evapotranspiration of Greenhouse Tomato at Different Growth Stages Gong, Xuewen Bo, Guokui Liu, Hao Ge, Jiankun Li, Xiaoming Gao, Shikai Plants (Basel) Article Mastering crop evapotranspiration (ET) and improving the accuracy of ET simulation is critical for optimizing the irrigation schedule and saving water resources, particularly for crops cultivated in a greenhouse. Taking greenhouse-grown tomato under drip irrigation as an example, two weighing lysimeters were used to monitor ET at two seasons (2019 and 2020), whilst meteorological factors inside the greenhouse were measured using an automatic weather station. Then the path analysis approach was employed to determine the main environmental control factors of ET. On this basis, an improved Priestley-Taylor (IPT) model was developed to simulate tomato ET at different growth stages by considering the influence of environmental changes on model parameters (e.g., leaf senescence coefficient, temperature constraint coefficient and soil evaporative water stress coefficient). Results showed that the average daily ET varied from 0.06 to 6.57 mm d(−1), which were ~0.98, ~2.58, ~3.70 and ~3.32 mm/d at the initial, development, middle and late stages, respectively, with the total ET over the whole growth stage of ~333.0 mm. Net solar radiation (R(n)) and vapor pressure deficit (VPD) were the direct influencing factors of ET, whereas air temperature (T(a)) was the limiting factor and wind speed (u(2)) had a little influence on ET. The order of correlation coefficients between meteorological factors and ET at two seasons was R(n) > VPD > T(a) > u(2). The IPT model can accurately simulate ET in hourly and daily scales. The root mean square error of hourly ET at four stages changed from 0.002 to 0.08 mm h(−1) and daily ET varied from 0.54 to 0.57 mm d(−1). The IPT coefficient was close to the recommended PT coefficient (1.26) when the average T(a) approaches 26 °C and LAI approaches 2.5 cm(2) cm(−2) in greenhouse conditions. Our results can provide a theoretical basis for further optimization of greenhouse crop irrigation schedules and improvement of water use efficiency. MDPI 2022-11-02 /pmc/articles/PMC9658431/ /pubmed/36365409 http://dx.doi.org/10.3390/plants11212956 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Gong, Xuewen
Bo, Guokui
Liu, Hao
Ge, Jiankun
Li, Xiaoming
Gao, Shikai
Performance of the Improved Priestley-Taylor Model for Simulating Evapotranspiration of Greenhouse Tomato at Different Growth Stages
title Performance of the Improved Priestley-Taylor Model for Simulating Evapotranspiration of Greenhouse Tomato at Different Growth Stages
title_full Performance of the Improved Priestley-Taylor Model for Simulating Evapotranspiration of Greenhouse Tomato at Different Growth Stages
title_fullStr Performance of the Improved Priestley-Taylor Model for Simulating Evapotranspiration of Greenhouse Tomato at Different Growth Stages
title_full_unstemmed Performance of the Improved Priestley-Taylor Model for Simulating Evapotranspiration of Greenhouse Tomato at Different Growth Stages
title_short Performance of the Improved Priestley-Taylor Model for Simulating Evapotranspiration of Greenhouse Tomato at Different Growth Stages
title_sort performance of the improved priestley-taylor model for simulating evapotranspiration of greenhouse tomato at different growth stages
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9658431/
https://www.ncbi.nlm.nih.gov/pubmed/36365409
http://dx.doi.org/10.3390/plants11212956
work_keys_str_mv AT gongxuewen performanceoftheimprovedpriestleytaylormodelforsimulatingevapotranspirationofgreenhousetomatoatdifferentgrowthstages
AT boguokui performanceoftheimprovedpriestleytaylormodelforsimulatingevapotranspirationofgreenhousetomatoatdifferentgrowthstages
AT liuhao performanceoftheimprovedpriestleytaylormodelforsimulatingevapotranspirationofgreenhousetomatoatdifferentgrowthstages
AT gejiankun performanceoftheimprovedpriestleytaylormodelforsimulatingevapotranspirationofgreenhousetomatoatdifferentgrowthstages
AT lixiaoming performanceoftheimprovedpriestleytaylormodelforsimulatingevapotranspirationofgreenhousetomatoatdifferentgrowthstages
AT gaoshikai performanceoftheimprovedpriestleytaylormodelforsimulatingevapotranspirationofgreenhousetomatoatdifferentgrowthstages