Cargando…
Precision Phenotyping of Nectar-Related Traits Using X-ray Micro Computed Tomography
Flower morphologies shape the accessibility to nectar and pollen, two major traits that determine plant–pollinator interactions and reproductive success. Melon is an economically important crop whose reproduction is completely pollinator-dependent and, as such, is a valuable model for studying crop-...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9658521/ https://www.ncbi.nlm.nih.gov/pubmed/36359848 http://dx.doi.org/10.3390/cells11213452 |
_version_ | 1784829971830669312 |
---|---|
author | Begot, Laurent Slavkovic, Filip Oger, Myriam Pichot, Clement Morin, Halima Boualem, Adnane Favier, Anne-Laure Bendahmane, Abdelhafid |
author_facet | Begot, Laurent Slavkovic, Filip Oger, Myriam Pichot, Clement Morin, Halima Boualem, Adnane Favier, Anne-Laure Bendahmane, Abdelhafid |
author_sort | Begot, Laurent |
collection | PubMed |
description | Flower morphologies shape the accessibility to nectar and pollen, two major traits that determine plant–pollinator interactions and reproductive success. Melon is an economically important crop whose reproduction is completely pollinator-dependent and, as such, is a valuable model for studying crop-ecological functions. High-resolution imaging techniques, such as micro-computed tomography (micro-CT), have recently become popular for phenotyping in plant science. Here, we implemented micro-CT to study floral morphology and honey bees in the context of nectar-related traits without a sample preparation to improve the phenotyping precision and quality. We generated high-quality 3D models of melon male and female flowers and compared the geometric measures. Micro-CT allowed for a relatively easy and rapid generation of 3D volumetric data on nectar, nectary, flower, and honey bee body sizes. A comparative analysis of male and female flowers showed a strong positive correlation between the nectar gland volume and the volume of the secreted nectar. We modeled the nectar level inside the flower and reconstructed a 3D model of the accessibility by honey bees. By combining data on flower morphology, the honey bee size and nectar volume, this protocol can be used to assess the flower accessibility to pollinators in a high resolution, and can readily carry out genotypes comparative analysis to identify nectar-pollination-related traits. |
format | Online Article Text |
id | pubmed-9658521 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-96585212022-11-15 Precision Phenotyping of Nectar-Related Traits Using X-ray Micro Computed Tomography Begot, Laurent Slavkovic, Filip Oger, Myriam Pichot, Clement Morin, Halima Boualem, Adnane Favier, Anne-Laure Bendahmane, Abdelhafid Cells Article Flower morphologies shape the accessibility to nectar and pollen, two major traits that determine plant–pollinator interactions and reproductive success. Melon is an economically important crop whose reproduction is completely pollinator-dependent and, as such, is a valuable model for studying crop-ecological functions. High-resolution imaging techniques, such as micro-computed tomography (micro-CT), have recently become popular for phenotyping in plant science. Here, we implemented micro-CT to study floral morphology and honey bees in the context of nectar-related traits without a sample preparation to improve the phenotyping precision and quality. We generated high-quality 3D models of melon male and female flowers and compared the geometric measures. Micro-CT allowed for a relatively easy and rapid generation of 3D volumetric data on nectar, nectary, flower, and honey bee body sizes. A comparative analysis of male and female flowers showed a strong positive correlation between the nectar gland volume and the volume of the secreted nectar. We modeled the nectar level inside the flower and reconstructed a 3D model of the accessibility by honey bees. By combining data on flower morphology, the honey bee size and nectar volume, this protocol can be used to assess the flower accessibility to pollinators in a high resolution, and can readily carry out genotypes comparative analysis to identify nectar-pollination-related traits. MDPI 2022-10-31 /pmc/articles/PMC9658521/ /pubmed/36359848 http://dx.doi.org/10.3390/cells11213452 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Begot, Laurent Slavkovic, Filip Oger, Myriam Pichot, Clement Morin, Halima Boualem, Adnane Favier, Anne-Laure Bendahmane, Abdelhafid Precision Phenotyping of Nectar-Related Traits Using X-ray Micro Computed Tomography |
title | Precision Phenotyping of Nectar-Related Traits Using X-ray Micro Computed Tomography |
title_full | Precision Phenotyping of Nectar-Related Traits Using X-ray Micro Computed Tomography |
title_fullStr | Precision Phenotyping of Nectar-Related Traits Using X-ray Micro Computed Tomography |
title_full_unstemmed | Precision Phenotyping of Nectar-Related Traits Using X-ray Micro Computed Tomography |
title_short | Precision Phenotyping of Nectar-Related Traits Using X-ray Micro Computed Tomography |
title_sort | precision phenotyping of nectar-related traits using x-ray micro computed tomography |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9658521/ https://www.ncbi.nlm.nih.gov/pubmed/36359848 http://dx.doi.org/10.3390/cells11213452 |
work_keys_str_mv | AT begotlaurent precisionphenotypingofnectarrelatedtraitsusingxraymicrocomputedtomography AT slavkovicfilip precisionphenotypingofnectarrelatedtraitsusingxraymicrocomputedtomography AT ogermyriam precisionphenotypingofnectarrelatedtraitsusingxraymicrocomputedtomography AT pichotclement precisionphenotypingofnectarrelatedtraitsusingxraymicrocomputedtomography AT morinhalima precisionphenotypingofnectarrelatedtraitsusingxraymicrocomputedtomography AT boualemadnane precisionphenotypingofnectarrelatedtraitsusingxraymicrocomputedtomography AT favierannelaure precisionphenotypingofnectarrelatedtraitsusingxraymicrocomputedtomography AT bendahmaneabdelhafid precisionphenotypingofnectarrelatedtraitsusingxraymicrocomputedtomography |