Cargando…
A Novel Deep Neural Network Method for HAR-Based Team Training Using Body-Worn Inertial Sensors
Human activity recognition (HAR) became a challenging issue in recent years. In this paper, we propose a novel approach to tackle indistinguishable activity recognition based on human wearable sensors. Generally speaking, vision-based solutions struggle with low illumination environments and partial...
Autores principales: | Fan, Yun-Chieh, Tseng, Yu-Hsuan, Wen, Chih-Yu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9658685/ https://www.ncbi.nlm.nih.gov/pubmed/36366202 http://dx.doi.org/10.3390/s22218507 |
Ejemplares similares
-
Hang-Time HAR: A Benchmark Dataset for Basketball Activity Recognition Using Wrist-Worn Inertial Sensors
por: Hoelzemann, Alexander, et al.
Publicado: (2023) -
Pedestrian Navigation Based on a Waist-Worn Inertial Sensor
por: Alvarez, Juan Carlos, et al.
Publicado: (2012) -
Calibration-Free Gait Assessment by Foot-Worn Inertial Sensors
por: Laidig, Daniel, et al.
Publicado: (2021) -
Chest-Worn Inertial Sensors: A Survey of Applications and Methods
por: Rahmani, Mohammad Hasan, et al.
Publicado: (2021) -
Detection of Gait Abnormalities for Fall Risk Assessment Using Wrist-Worn Inertial Sensors and Deep Learning
por: Kiprijanovska, Ivana, et al.
Publicado: (2020)