Cargando…
A Robust Personalized Classification Method for Breast Cancer Metastasis Prediction
SIMPLE SUMMARY: Accurate prediction of breast cancer metastasis risks using gene expression data and machine learning can help improve cancer treatment and overall survival. However, breast cancer can be categorized into multiple subtypes, and a single predictive model may not work well for all pati...
Autores principales: | Adnan, Nahim, Najnin, Tanzira, Ruan, Jianhua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9658757/ https://www.ncbi.nlm.nih.gov/pubmed/36358745 http://dx.doi.org/10.3390/cancers14215327 |
Ejemplares similares
-
Robust edge-based biomarker discovery improves prediction of breast cancer metastasis
por: Adnan, Nahim, et al.
Publicado: (2020) -
Comparative evaluation of network features for the prediction of breast cancer metastasis
por: Adnan, Nahim, et al.
Publicado: (2020) -
A Network-Based Approach for Improving Annotation of Transcription Factor Functions and Binding Sites in Arabidopsis thaliana
por: Najnin, Tanzira, et al.
Publicado: (2023) -
A Steiner tree-based method for biomarker discovery and classification in breast cancer metastasis
por: Jahid, Md Jamiul, et al.
Publicado: (2012) -
Artificial neural network with Taguchi method for robust classification model to improve classification accuracy of breast cancer
por: Rahman, Md Akizur, et al.
Publicado: (2021)