Cargando…
Antibacterial Effect of Triazine in Barrier Membranes with Therapeutic Activity for Guided Bone Regeneration
Objective: This study aimed to develop polymer-based barrier membranes based on poly(butylene-adipate-co-terephthalate) (PBAT) with the addition of 1,3,5-triacriloilhexahydro-1,3,5-triazine (TAT). Materials and Methods: Polymeric solutions were used to produce membranes with 5 wt% and 10 wt% of TAT...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9658774/ https://www.ncbi.nlm.nih.gov/pubmed/36365476 http://dx.doi.org/10.3390/polym14214482 |
Sumario: | Objective: This study aimed to develop polymer-based barrier membranes based on poly(butylene-adipate-co-terephthalate) (PBAT) with the addition of 1,3,5-triacriloilhexahydro-1,3,5-triazine (TAT). Materials and Methods: Polymeric solutions were used to produce membranes with 5 wt% and 10 wt% of TAT by solvent casting. Membranes without the addition of TAT were used as controls. The membranes were chemically characterized by Fourier transform infrared spectroscopy (FTIR) and thermogravimetry (TGA); surface properties were assessed by profilometry and contact angle; the mechanical behavior was evaluated by a tensile test, and the biological properties were assessed by direct–indirect cell viability and antibacterial activity by S. mutans and S. aureus colony-forming units. Results: TAT was detected in the FTIR and TGA analyses and modified the top surface of the membranes, increasing their roughness and wetness in both concentrations compared to the control group (p < 0.05). The addition of TAT, regardless of concentration, reduced the tensile strength and increased membrane stiffness (p < 0.05). The cell viability of 5 wt% TAT and 10 wt% TAT was 86.37% and 82.36%, respectively. All tested concentrations reduced the formation of biofilm on the membranes when compared to the control. Conclusion: The addition of TAT successfully resulted in the antimicrobial ability of PBAT-based barrier membranes, while it maintained acceptable levels of cell viability in membranes with adequate handling and surface properties. |
---|