Cargando…
Optimal User Scheduling in Multi Antenna System Using Multi Agent Reinforcement Learning
Multiple Input Multiple Output (MIMO) systems have been gaining significant attention from the research community due to their potential to improve data rates. However, a suitable scheduling mechanism is required to efficiently distribute available spectrum resources and enhance system capacity. Thi...
Autores principales: | Naeem, Muddasar, Coronato, Antonio, Ullah, Zaib, Bashir, Sajid, Paragliola, Giovanni |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9658821/ https://www.ncbi.nlm.nih.gov/pubmed/36365975 http://dx.doi.org/10.3390/s22218278 |
Ejemplares similares
-
Application of Reinforcement Learning and Deep Learning in Multiple-Input and Multiple-Output (MIMO) Systems
por: Naeem, Muddasar, et al.
Publicado: (2021) -
Joint User Scheduling, Relay Selection, and Power Allocation for Multi-Antenna Opportunistic Beamforming Systems
por: Sun, Wenbin, et al.
Publicado: (2021) -
Multi-agent machine learning: a reinforcement approach
por: Schwartz, H M, et al.
Publicado: (2014) -
Emergence of linguistic conventions in multi-agent reinforcement learning
por: Lipowska, Dorota, et al.
Publicado: (2018) -
Multi-Agent Deep Reinforcement Learning for Multi-Robot Applications: A Survey
por: Orr, James, et al.
Publicado: (2023)