Cargando…

Mechanical Properties of Ultra-High Performance Concrete with Coal Gasification Coarse Slag as River Sand Replacement

Coal gasification coarse slag (CGCS) is a by-product of coal gasification. Despite its abundance, CGCS is mostly used in boiler blending, stacking, and landfill. Large-scale industrial applications of CGCS can be environment-friendly and cost saving. In this study, the application of CGCS as a subst...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhu, Ziqi, Lian, Xiaoqing, Zhai, Xiaowei, Li, Xiaojun, Guan, Muhong, Wang, Xiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9658837/
https://www.ncbi.nlm.nih.gov/pubmed/36363145
http://dx.doi.org/10.3390/ma15217552
Descripción
Sumario:Coal gasification coarse slag (CGCS) is a by-product of coal gasification. Despite its abundance, CGCS is mostly used in boiler blending, stacking, and landfill. Large-scale industrial applications of CGCS can be environment-friendly and cost saving. In this study, the application of CGCS as a substitute for river sand (RS) with different replacement ratios in ultra-high performance concrete (UHPC) was investigated. The effects of CGCS replacement ratios on the fluidity and mechanical properties of specimens were examined, and the effect mechanisms were explored on the basis of hydration products and the multi-scale (millimetre-scale and micrometre-scale) microstructure analysis obtained through X-ray diffraction (XRD), scanning electron microscopy, and X-ray energy-dispersive spectroscopy. With an increase in the CGCS replacement ratio, the water–binder ratio (w/b), flexural strength, and compressive strength decreased. Specimens containing CGCS of ≤25% can satisfy the strength requirement of non-structural UHPC, with flexure strength of 29 MPa and compressive strength of 111 MPa at day 28. According to the XRD results and multi-scale microstructure analysis, amorphous glass beads in CGCS positively influenced ettringite generation due to the pozzolanic activity. Porous carbon particles in CGCS showed strong interfacial bonding with cement slurry due to internal hydration; this bonding was conducive to improving the mechanical strength. However, CGCS hindered hydration in the later curing stage, leading to an increase in the unreacted cement and agglomeration of fly ash; in addition, at a CGCS replacement ratio of up to 50%, an apparent interfacial transition zone structure was observed, which was the main contributor to mechanical strength deterioration.