Cargando…
Applying an Improved Stacking Ensemble Model to Predict the Mortality of ICU Patients with Heart Failure
Cardiovascular diseases have been identified as one of the top three causes of death worldwide, with onset and deaths mostly due to heart failure (HF). In ICU, where patients with HF are at increased risk of death and consume significant medical resources, early and accurate prediction of the time o...
Autores principales: | Chiu, Chih-Chou, Wu, Chung-Min, Chien, Te-Nien, Kao, Ling-Jing, Li, Chengcheng, Jiang, Han-Ling |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9659015/ https://www.ncbi.nlm.nih.gov/pubmed/36362686 http://dx.doi.org/10.3390/jcm11216460 |
Ejemplares similares
-
Predicting the Mortality of ICU Patients by Topic Model with Machine-Learning Techniques
por: Chiu, Chih-Chou, et al.
Publicado: (2022) -
Integrating Structured and Unstructured EHR Data for Predicting Mortality by Machine Learning and Latent Dirichlet Allocation Method
por: Chiu, Chih-Chou, et al.
Publicado: (2023) -
Mortality prediction in ICU Using a Stacked Ensemble Model
por: Ren, Na, et al.
Publicado: (2022) -
Risk prediction of heart failure in patients with ischemic heart disease using network analytics and stacking ensemble learning
por: Zhou, Dejia, et al.
Publicado: (2023) -
StackTHPred: Identifying Tumor-Homing Peptides through GBDT-Based Feature Selection with Stacking Ensemble Architecture
por: Guan, Jiahui, et al.
Publicado: (2023)