Cargando…
Research on the Improving Performance of Foam Concrete Applied to the Filling of Natural Gas Pipeline Cross-River Tunnel
The shield tunnel is a common solution for natural gas pipelines crossing rivers. Consequently, the development of natural gas tunnel filling materials with excellent performance is crucial to the safe operation and maintenance of pipelines. The foam concrete offers a reasonable solution. Neverthele...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9659097/ https://www.ncbi.nlm.nih.gov/pubmed/36363054 http://dx.doi.org/10.3390/ma15217461 |
_version_ | 1784830117268160512 |
---|---|
author | Ma, Xiaosong Li, Chunbao Chen, Haiyang Wei, Yongqi Weng, Yongmei Li, Shen Hojiboev, Dalerjon |
author_facet | Ma, Xiaosong Li, Chunbao Chen, Haiyang Wei, Yongqi Weng, Yongmei Li, Shen Hojiboev, Dalerjon |
author_sort | Ma, Xiaosong |
collection | PubMed |
description | The shield tunnel is a common solution for natural gas pipelines crossing rivers. Consequently, the development of natural gas tunnel filling materials with excellent performance is crucial to the safe operation and maintenance of pipelines. The foam concrete offers a reasonable solution. Nevertheless, since its inherent compressive strength decreases almost proportionally with the decrease in density, obstacles remain concerning obtaining the high density and relatively low strength required for natural gas tunnel filling. Here, a synergistic optimization strategy was proposed involving the orthogonal test, univariate control, and comprehensive balance method. It involves modifying the type and proportion of cementitious matrix, in particular by incorporating fly ash and PVA fibers in the mix design, and synergetic determining the best mix ratio from the aspects of compressive strength, stability, and dry density. The obtained foam concrete has a compressive strength of 4.29 MPa (FC4) and a dry density of 1060.59 kg/m(3) (A11), which meets the requirements of pipeline pressure and pipeline anti-floating. This study is applied to the Yangtze River shield crossing project of the Sino-Russian Eastern Gas Pipeline, and ANSYS was used to simulate the stress and deformation of the foam concrete. This work provides an efficient foam concrete optimization mix scheme, and supports the application of foam concrete in the filling of the long-distance cross-river natural gas tunnels. |
format | Online Article Text |
id | pubmed-9659097 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-96590972022-11-15 Research on the Improving Performance of Foam Concrete Applied to the Filling of Natural Gas Pipeline Cross-River Tunnel Ma, Xiaosong Li, Chunbao Chen, Haiyang Wei, Yongqi Weng, Yongmei Li, Shen Hojiboev, Dalerjon Materials (Basel) Article The shield tunnel is a common solution for natural gas pipelines crossing rivers. Consequently, the development of natural gas tunnel filling materials with excellent performance is crucial to the safe operation and maintenance of pipelines. The foam concrete offers a reasonable solution. Nevertheless, since its inherent compressive strength decreases almost proportionally with the decrease in density, obstacles remain concerning obtaining the high density and relatively low strength required for natural gas tunnel filling. Here, a synergistic optimization strategy was proposed involving the orthogonal test, univariate control, and comprehensive balance method. It involves modifying the type and proportion of cementitious matrix, in particular by incorporating fly ash and PVA fibers in the mix design, and synergetic determining the best mix ratio from the aspects of compressive strength, stability, and dry density. The obtained foam concrete has a compressive strength of 4.29 MPa (FC4) and a dry density of 1060.59 kg/m(3) (A11), which meets the requirements of pipeline pressure and pipeline anti-floating. This study is applied to the Yangtze River shield crossing project of the Sino-Russian Eastern Gas Pipeline, and ANSYS was used to simulate the stress and deformation of the foam concrete. This work provides an efficient foam concrete optimization mix scheme, and supports the application of foam concrete in the filling of the long-distance cross-river natural gas tunnels. MDPI 2022-10-25 /pmc/articles/PMC9659097/ /pubmed/36363054 http://dx.doi.org/10.3390/ma15217461 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ma, Xiaosong Li, Chunbao Chen, Haiyang Wei, Yongqi Weng, Yongmei Li, Shen Hojiboev, Dalerjon Research on the Improving Performance of Foam Concrete Applied to the Filling of Natural Gas Pipeline Cross-River Tunnel |
title | Research on the Improving Performance of Foam Concrete Applied to the Filling of Natural Gas Pipeline Cross-River Tunnel |
title_full | Research on the Improving Performance of Foam Concrete Applied to the Filling of Natural Gas Pipeline Cross-River Tunnel |
title_fullStr | Research on the Improving Performance of Foam Concrete Applied to the Filling of Natural Gas Pipeline Cross-River Tunnel |
title_full_unstemmed | Research on the Improving Performance of Foam Concrete Applied to the Filling of Natural Gas Pipeline Cross-River Tunnel |
title_short | Research on the Improving Performance of Foam Concrete Applied to the Filling of Natural Gas Pipeline Cross-River Tunnel |
title_sort | research on the improving performance of foam concrete applied to the filling of natural gas pipeline cross-river tunnel |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9659097/ https://www.ncbi.nlm.nih.gov/pubmed/36363054 http://dx.doi.org/10.3390/ma15217461 |
work_keys_str_mv | AT maxiaosong researchontheimprovingperformanceoffoamconcreteappliedtothefillingofnaturalgaspipelinecrossrivertunnel AT lichunbao researchontheimprovingperformanceoffoamconcreteappliedtothefillingofnaturalgaspipelinecrossrivertunnel AT chenhaiyang researchontheimprovingperformanceoffoamconcreteappliedtothefillingofnaturalgaspipelinecrossrivertunnel AT weiyongqi researchontheimprovingperformanceoffoamconcreteappliedtothefillingofnaturalgaspipelinecrossrivertunnel AT wengyongmei researchontheimprovingperformanceoffoamconcreteappliedtothefillingofnaturalgaspipelinecrossrivertunnel AT lishen researchontheimprovingperformanceoffoamconcreteappliedtothefillingofnaturalgaspipelinecrossrivertunnel AT hojiboevdalerjon researchontheimprovingperformanceoffoamconcreteappliedtothefillingofnaturalgaspipelinecrossrivertunnel |