Cargando…
Health, Security and Fire Safety Process Optimisation Using Intelligence at the Edge
The proliferation of sensors to capture parametric measures or event data over a myriad of networking topologies is growing exponentially to improve our daily lives. Large amounts of data must be shared on constrained network infrastructure, increasing delays and loss of valuable real-time informati...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9659114/ https://www.ncbi.nlm.nih.gov/pubmed/36365840 http://dx.doi.org/10.3390/s22218143 |
Sumario: | The proliferation of sensors to capture parametric measures or event data over a myriad of networking topologies is growing exponentially to improve our daily lives. Large amounts of data must be shared on constrained network infrastructure, increasing delays and loss of valuable real-time information. Our research presents a solution for the health, security, safety, and fire domains to obtain temporally synchronous, credible and high-resolution data from sensors to maintain the temporal hierarchy of reported events. We developed a multisensor fusion framework with energy conservation via domain-specific “wake up” triggers that turn on low-power model-driven microcontrollers using machine learning (TinyML) models. We investigated optimisation techniques using anomaly detection modes to deliver real-time insights in demanding life-saving situations. Using energy-efficient methods to analyse sensor data at the point of creation, we facilitated a pathway to provide sensor customisation at the “edge”, where and when it is most needed. We present the application and generalised results in a real-life health care scenario and explain its application and benefits in other named researched domains. |
---|