Cargando…
Prediction Model for 30-Day Mortality after Non-Cardiac Surgery Using Machine-Learning Techniques Based on Preoperative Evaluation of Electronic Medical Records
Background: Machine-learning techniques are useful for creating prediction models in clinical practice. This study aimed to construct a prediction model of postoperative 30-day mortality based on an automatically extracted electronic preoperative evaluation sheet. Methods: We used data from 276,341...
Autores principales: | Choi, Byungjin, Oh, Ah Ran, Lee, Seung-Hwa, Lee, Dong Yun, Lee, Jong-Hwan, Yang, Kwangmo, Kim, Ha Yeon, Park, Rae Woong, Park, Jungchan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9659244/ https://www.ncbi.nlm.nih.gov/pubmed/36362715 http://dx.doi.org/10.3390/jcm11216487 |
Ejemplares similares
-
Machine learning-based prediction model for postoperative delirium in non-cardiac surgery
por: Lee, Dong Yun, et al.
Publicado: (2023) -
Prediction model for myocardial injury after non-cardiac surgery using machine learning
por: Oh, Ah Ran, et al.
Publicado: (2023) -
Author Correction: Prediction model for myocardial injury after non-cardiac surgery using machine learning
por: Oh, Ah Ran, et al.
Publicado: (2023) -
Prediction model for postoperative atrial fibrillation in non-cardiac surgery using machine learning
por: Oh, Ah Ran, et al.
Publicado: (2023) -
Volatile versus total intravenous anesthesia for 30-day mortality following non-cardiac surgery in patients with preoperative myocardial injury
por: Park, Jungchan, et al.
Publicado: (2020)