Cargando…
Gaussian Process for Machine Learning-Based Fatigue Life Prediction Model under Multiaxial Stress–Strain Conditions
In this paper, a new method for fatigue life prediction under multiaxial stress-strain conditions is developed. The method applies machine learning with the Gaussian process for regression to build a fatigue model. The fatigue failure mechanisms are reflected in the model by the application of the p...
Autores principales: | Karolczuk, Aleksander, Skibicki, Dariusz, Pejkowski, Łukasz |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9659309/ https://www.ncbi.nlm.nih.gov/pubmed/36363388 http://dx.doi.org/10.3390/ma15217797 |
Ejemplares similares
-
The Shear Stress Determination in Tubular Specimens under Torsion in the Elastic–Plastic Strain Range from the Perspective of Fatigue Analysis
por: Seyda, Jan, et al.
Publicado: (2020) -
Application of Life-Dependent Material Parameters to Fatigue Life Prediction under Multiaxial and Non-Zero Mean Loading
por: Kluger, Krzysztof, et al.
Publicado: (2020) -
Validating the Methods to Process the Stress Path in Multiaxial High-Cycle Fatigue Criteria
por: Papuga, Jan, et al.
Publicado: (2021) -
Establishment and Verification of Multiaxis Fatigue Life Prediction Model
por: Fu, Zhuo, et al.
Publicado: (2021) -
A New Multiparameter Model for Multiaxial Fatigue Life Prediction of Rubber Materials
por: Tobajas, Rafael, et al.
Publicado: (2020)