Cargando…
Genetic algorithms reveal profound individual differences in emotion recognition
Emotional communication relies on a mutual understanding, between expresser and viewer, of facial configurations that broadcast specific emotions. However, we do not know whether people share a common understanding of how emotional states map onto facial expressions. This is because expressions exis...
Autores principales: | Binetti, Nicola, Roubtsova, Nadejda, Carlisi, Christina, Cosker, Darren, Viding, Essi, Mareschal, Isabelle |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9659399/ https://www.ncbi.nlm.nih.gov/pubmed/36322724 http://dx.doi.org/10.1073/pnas.2201380119 |
Ejemplares similares
-
Using genetic algorithms to uncover individual differences in how humans represent facial emotion
por: Carlisi, Christina O., et al.
Publicado: (2021) -
Selective binding of facial features reveals dynamic expression fragments
por: Harrison, Charlotte, et al.
Publicado: (2018) -
Temporal Order Judgements of Dynamic Gaze Stimuli Reveal a Postdictive Prioritisation of Averted Over Direct Shifts
por: Binetti, Nicola, et al.
Publicado: (2017) -
Emotion recognition bias depends on stimulus morphing strategy
por: Vikhanova, Anastasia, et al.
Publicado: (2022) -
Emotional attentional capture in children with conduct problems: the role of callous-unemotional traits
por: Hodsoll, Sara, et al.
Publicado: (2014)