Cargando…

High efficiency sorting and outgrowth for single-cell cloning of mammalian cell lines

Single-cell selection and cloning is required for multiple bioprocessing and cell engineering workflows. Dispensing efficiency and outgrowth were optimized for multiple common suspension (CHO ES, Expi293F, and Jurkat) and adherent (MCF-7, A549, CHO-K1, and HEK293) cell lines. Single-cell sorting usi...

Descripción completa

Detalles Bibliográficos
Autores principales: Munoz, Adonary, Morachis, José M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Netherlands 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9659504/
https://www.ncbi.nlm.nih.gov/pubmed/36074283
http://dx.doi.org/10.1007/s10529-022-03300-8
Descripción
Sumario:Single-cell selection and cloning is required for multiple bioprocessing and cell engineering workflows. Dispensing efficiency and outgrowth were optimized for multiple common suspension (CHO ES, Expi293F, and Jurkat) and adherent (MCF-7, A549, CHO-K1, and HEK293) cell lines. Single-cell sorting using a low pressure microfluidic cell sorter, the WOLF Cell Sorter, was compared with limiting dilution at 0.5 cells/well to demonstrate the increased efficiency of using flow cytometry selection of cells. In this work, there was an average single cell deposition on Day 0 of 89.1% across all the cell lines tested compared to 41.2% when using limiting dilution. After growth for 14 days, 66.7% of single-cell clones sorted with the WOLF Cell Sorter survived and only 23.8% when using limiting dilution. Using the WOLF Cell Sorter for cell line development results in higher viable single-cell colonies and the ability to select subpopulations of single-cells using multiple parameters.