Cargando…
Enhanced framework for COVID-19 prediction with computed tomography scan images using dense convolutional neural network and novel loss function()
Recent studies have shown that computed tomography (CT) scan images can characterize COVID-19 disease in patients. Several deep learning (DL) methods have been proposed for diagnosis in the literature, including convolutional neural networks (CNN). But, with inefficient patient classification models...
Autores principales: | Motwani, Anand, Shukla, Piyush Kumar, Pawar, Mahesh, Kumar, Manoj, Ghosh, Uttam, Alnumay, Waleed, Nayak, Soumya Ranjan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Published by Elsevier Ltd.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9659516/ https://www.ncbi.nlm.nih.gov/pubmed/36406625 http://dx.doi.org/10.1016/j.compeleceng.2022.108479 |
Ejemplares similares
-
Ubiquitous and smart healthcare monitoring frameworks based on machine learning: A comprehensive review
por: Motwani, Anand, et al.
Publicado: (2022) -
A Trust-Based Predictive Model for Mobile Ad Hoc Network in Internet of Things †
por: Alnumay, Waleed, et al.
Publicado: (2019) -
A depthwise separable dense convolutional network with convolution block attention module for COVID-19 diagnosis on CT scans
por: Li, Qian, et al.
Publicado: (2021) -
Densely connected convolutional networks-based COVID-19 screening model
por: Singh, Dilbag, et al.
Publicado: (2021) -
Dense Convolutional Neural Network for Detection of Cancer from CT Images
por: Sreenivasu, S. V. N., et al.
Publicado: (2022)