Cargando…
Application of convex hull analysis for the evaluation of data heterogeneity between patient populations of different origin and implications of hospital bias in downstream machine-learning-based data processing: A comparison of 4 critical-care patient datasets
Machine learning (ML) models are developed on a learning dataset covering only a small part of the data of interest. If model predictions are accurate for the learning dataset but fail for unseen data then generalization error is considered high. This problem manifests itself within all major sub-fi...
Autores principales: | Sharafutdinov, Konstantin, Bhat, Jayesh S., Fritsch, Sebastian Johannes, Nikulina, Kateryna, E. Samadi, Moein, Polzin, Richard, Mayer, Hannah, Marx, Gernot, Bickenbach, Johannes, Schuppert, Andreas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9659720/ https://www.ncbi.nlm.nih.gov/pubmed/36387013 http://dx.doi.org/10.3389/fdata.2022.603429 |
Ejemplares similares
-
Biometric covariates and outcome in COVID-19 patients: are we looking close enough?
por: Sharafutdinov, Konstantin, et al.
Publicado: (2021) -
A training strategy for hybrid models to break the curse of dimensionality
por: E. Samadi, Moein, et al.
Publicado: (2022) -
Convex-hull voting method on a large data set
por: Ellingson, Sally R, et al.
Publicado: (2015) -
Preprocessing 2D data for fast convex hull computations
por: Cadenas, Oswaldo, et al.
Publicado: (2019) -
Preconditioning 2D Integer Data for Fast Convex Hull Computations
por: Cadenas, José Oswaldo, et al.
Publicado: (2016)