Cargando…
Estimating time-series changes in social sentiment @Twitter in U.S. metropolises during the COVID-19 pandemic
Since early 2020, the global coronavirus pandemic has strained economic activities and traditional lifestyles. For such emergencies, our paper proposes a social sentiment estimation model that changes in response to infection conditions and state government orders. By designing mediation keywords th...
Autores principales: | Saito, Ryuichi, Haruyama, Shinichiro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Nature Singapore
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9660099/ https://www.ncbi.nlm.nih.gov/pubmed/36405087 http://dx.doi.org/10.1007/s42001-022-00186-4 |
Ejemplares similares
-
A typology of U.S. metropolises by rent burden and its major drivers
por: Samarin, Mikhail, et al.
Publicado: (2023) -
Measuring spatio-textual affinities in twitter between two urban metropolises
por: Hu, Minda, et al.
Publicado: (2021) -
Estimation and prediction of COVID-19 cases in Brazilian
metropolises
por: Sousa, George Jó Bezerra, et al.
Publicado: (2020) -
Immigration and place in mediterranean metropolises /
Publicado: (2002) -
Global Sentiments Surrounding the COVID-19 Pandemic on Twitter: Analysis of Twitter Trends
por: Lwin, May Oo, et al.
Publicado: (2020)