Cargando…
Framework for detection of probable clues to predict misleading information proliferated during COVID-19 outbreak
Spreading of misleading information on social web platforms has fuelled huge panic and confusion among the public regarding the Corona disease, the detection of which is of paramount importance. To identify the credibility of the posted claim, we have analyzed possible evidence from the news article...
Autores principales: | Varshney, Deepika, Vishwakarma, Dinesh Kumar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer London
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9660173/ https://www.ncbi.nlm.nih.gov/pubmed/36408286 http://dx.doi.org/10.1007/s00521-022-07938-3 |
Ejemplares similares
-
An automated multi-web platform voting framework to predict misleading information proliferated during COVID-19 outbreak using ensemble method
por: Varshney, Deepika, et al.
Publicado: (2023) -
A unified approach of detecting misleading images via tracing its instances on web and analyzing its past context for the verification of multimedia content
por: Varshney, Deepika, et al.
Publicado: (2022) -
A unified approach for detection of Clickbait videos on YouTube using cognitive evidences
por: Varshney, Deepika, et al.
Publicado: (2021) -
Detecting Misleading Information on COVID-19
Publicado: (2020) -
CoAID-DEEP: An Optimized Intelligent Framework for Automated Detecting COVID-19 Misleading Information on Twitter
Publicado: (2021)