Cargando…
A medium‐weight deep convolutional neural network‐based approach for onset epileptic seizures classification in EEG signals
INTRODUCTION: Epileptic condition can be detected in EEG data seconds before it occurs, according to evidence. To overcome the related long‐term mortality and morbidity from epileptic seizures, it is critical to make an initial diagnosis, uncover underlying causes, and avoid applicable risk factors....
Autores principales: | Nemati, Nazanin, Meshgini, Saeed |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9660412/ https://www.ncbi.nlm.nih.gov/pubmed/36196623 http://dx.doi.org/10.1002/brb3.2763 |
Ejemplares similares
-
Epileptic seizure detection with deep EEG features by convolutional neural network and shallow classifiers
por: Zeng, Wei, et al.
Publicado: (2023) -
Deep Convolutional Neural Network-Based Epileptic Electroencephalogram (EEG) Signal Classification
por: Gao, Yunyuan, et al.
Publicado: (2020) -
A Deep Convolutional Neural Network Method to Detect Seizures and Characteristic Frequencies Using Epileptic Electroencephalogram (EEG) Data
Publicado: (2021) -
Convolutional Neural Network Classification of Rest EEG Signals among People with Epilepsy, Psychogenic Non Epileptic Seizures and Control Subjects
por: Lo Giudice, Michele, et al.
Publicado: (2022) -
Permutation Entropy-Based Interpretability of Convolutional Neural Network Models for Interictal EEG Discrimination of Subjects with Epileptic Seizures vs. Psychogenic Non-Epileptic Seizures
por: Lo Giudice, Michele, et al.
Publicado: (2022)