Cargando…

Research Note: Growth promoting potential in Mstn mutant quail dependent and independent of increased egg size

In avian species, positive relationships between egg weight (EW) and body weight (BW) have been reported. However, the correlation between the body growth rate and different weights of eggs from genetically mutated avian species was not studied yet. Myostatin (Mstn), an anti-myogenic factor, mutant...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Dong-Hwan, Lee, Joonbum, Choi, Young Min, Lee, Kichoon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9660624/
https://www.ncbi.nlm.nih.gov/pubmed/36370661
http://dx.doi.org/10.1016/j.psj.2022.102260
Descripción
Sumario:In avian species, positive relationships between egg weight (EW) and body weight (BW) have been reported. However, the correlation between the body growth rate and different weights of eggs from genetically mutated avian species was not studied yet. Myostatin (Mstn), an anti-myogenic factor, mutant quail were recently developed, and it was reported that EW produced from Mstn homozygous mutant quail (HO) was heavier compared to those from wild-type quail (WT). In the current study, distributions of pre-incubated EW and associations between EW and BW were compared between the Mstn mutant and WT quail lines. Average egg weight for the HO group was significantly heavier than the WT (P < 0.001) and the number of eggs having heavier EW (over 11 g) was higher in the HO compared to the WT (P < 0.01). BWs at wk (W) 0, 4, and 6 after hatch were also significantly greater in the HO (P < 0.001 in all groups). In addition, linear regression analyses revealed positive relationships between EW and BW from W0 to W6, regardless of sexes and genotypes. Furthermore, Mstn mutant quail were a heavier BW compared to the WT quail originated from eggs with similar weights. These data indicate that increased BW by Mstn mutation is contributed by increased EW and/or growth promoting activity of Mstn mutation independent of increasing egg sizes. These findings provide Mstn as a desirable genetic factor for selection of poultry breeds with superior growth. In addition, the knowledge gained from this study could inspire similar proof-of-concept studies involving standard and commercial lines of poultry.