Cargando…
Monitoring Alzheimer’s Disease Progression in Mild Cognitive Impairment Stage Using Machine Learning-Based FDG-PET Classification Methods
BACKGROUND: We previously introduced a machine learning-based Alzheimer’s Disease Designation (MAD) framework for identifying AD-related metabolic patterns among neurodegenerative subjects. OBJECTIVE: We sought to assess the efficiency of our MAD framework for tracing the longitudinal brain metaboli...
Autores principales: | Beheshti, Iman, Geddert, Natasha, Perron, Jarrad, Gupta, Vinay, Albensi, Benedict C., Ko, Ji Hyun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
IOS Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9661333/ https://www.ncbi.nlm.nih.gov/pubmed/36057825 http://dx.doi.org/10.3233/JAD-220585 |
Ejemplares similares
-
FLAIR-Wise Machine-Learning Classification and Lateralization of MRI-Negative (18)F-FDG PET-Positive Temporal Lobe Epilepsy
por: Beheshti, Iman, et al.
Publicado: (2020) -
Regional analysis of FDG and PIB-PET images in normal aging, mild cognitive impairment, and Alzheimer’s disease
por: Li, Yi, et al.
Publicado: (2008) -
Based on Tau PET Radiomics Analysis for the Classification of Alzheimer’s Disease and Mild Cognitive Impairment
por: Jiao, Fangyang, et al.
Publicado: (2023) -
Prognosis of conversion of mild cognitive impairment to Alzheimer's dementia by voxel-wise Cox regression based on FDG PET data
por: Sörensen, Arnd, et al.
Publicado: (2018) -
FDG-PET hypermetabolism is associated with higher tau-PET in mild cognitive impairment at low amyloid-PET levels
por: Rubinski, Anna, et al.
Publicado: (2020)