Cargando…
Quantitative Multistate Binding Model of Silica Nanoparticle–Protein Interactions Obtained from Multinuclear Spin Relaxation
[Image: see text] Nanoparticle-assisted NMR spin relaxation (NASR), which makes internal protein dynamics in solution directly observable on nanosecond to microsecond time scales, has been applied to different nuclei and relaxation processes of the same protein system. A model is presented describin...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9661470/ https://www.ncbi.nlm.nih.gov/pubmed/36316009 http://dx.doi.org/10.1021/acs.jpcb.2c05967 |
Sumario: | [Image: see text] Nanoparticle-assisted NMR spin relaxation (NASR), which makes internal protein dynamics in solution directly observable on nanosecond to microsecond time scales, has been applied to different nuclei and relaxation processes of the same protein system. A model is presented describing the transient interaction between ubiquitin and anionic silica nanoparticles for the unified interpretation of a wealth of experimental data including (2)H, (13)C, and (15)N relaxation of methyl side chain and backbone moieties. The best model, implemented using a stochastic Liouville equation, describes the exchange process via an intermediary encounter state between free and fully nanoparticle-bound protein. The implication of the three-state binding model on the interpretation of NASR data is discussed. |
---|