Cargando…
A hybrid model of complexity estimation: Evidence from Russian legal texts
This article proposes a hybrid model for the estimation of the complexity of legal documents in Russian. The model consists of two main modules: linguistic feature extractor and a transformer-based neural encoder. The set of linguistic metrics includes both non-specific metrics traditionally used to...
Autores principales: | Blinova, Olga, Tarasov, Nikita |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9661728/ https://www.ncbi.nlm.nih.gov/pubmed/36388401 http://dx.doi.org/10.3389/frai.2022.1008530 |
Ejemplares similares
-
The unreasonable effectiveness of large language models in zero-shot semantic annotation of legal texts
por: Savelka, Jaromir, et al.
Publicado: (2023) -
Sentence-level complexity in Russian: An evaluation of BERT and graph neural networks
por: Ivanov, Vladimir Vladimirovich
Publicado: (2022) -
Editorial: Text complexity and simplification
por: Ermakova, Liana, et al.
Publicado: (2023) -
Extracting relations from texts using vector language models and a neural network classifier
por: Shishaev, Maksim, et al.
Publicado: (2023) -
Legal linguistic templates and the tension between legal knowledge representation and reasoning
por: Libal, Tomer
Publicado: (2023)