Cargando…
metaMIC: reference-free misassembly identification and correction of de novo metagenomic assemblies
Evaluating the quality of metagenomic assemblies is important for constructing reliable metagenome-assembled genomes and downstream analyses. Here, we present metaMIC (https://github.com/ZhaoXM-Lab/metaMIC), a machine learning-based tool for identifying and correcting misassemblies in metagenomic as...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9661791/ https://www.ncbi.nlm.nih.gov/pubmed/36376928 http://dx.doi.org/10.1186/s13059-022-02810-y |
Sumario: | Evaluating the quality of metagenomic assemblies is important for constructing reliable metagenome-assembled genomes and downstream analyses. Here, we present metaMIC (https://github.com/ZhaoXM-Lab/metaMIC), a machine learning-based tool for identifying and correcting misassemblies in metagenomic assemblies. Benchmarking results on both simulated and real datasets demonstrate that metaMIC outperforms existing tools when identifying misassembled contigs. Furthermore, metaMIC is able to localize the misassembly breakpoints, and the correction of misassemblies by splitting at misassembly breakpoints can improve downstream scaffolding and binning results. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13059-022-02810-y. |
---|