Cargando…
Lanthanide Ion Resonance‐Driven Rayleigh Scattering of Nanoparticles for Dual‐Modality Interferometric Scattering Microscopy
Light scattering from nanoparticles is significant in nanoscale imaging, photon confinement. and biosensing. However, engineering the scattering spectrum, traditionally by modifying the geometric feature of particles, requires synthesis and fabrication with nanometre accuracy. Here it is reported th...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9661846/ https://www.ncbi.nlm.nih.gov/pubmed/35975425 http://dx.doi.org/10.1002/advs.202203354 |
_version_ | 1784830564136648704 |
---|---|
author | Ding, Lei Shan, Xuchen Wang, Dejiang Liu, Baolei Du, Ziqing Di, Xiangjun Chen, Chaohao Maddahfar, Mahnaz Zhang, Ling Shi, Yuzhi Reece, Peter Halkon, Benjamin Aharonovich, Igor Xu, Xiaoxue Wang, Fan |
author_facet | Ding, Lei Shan, Xuchen Wang, Dejiang Liu, Baolei Du, Ziqing Di, Xiangjun Chen, Chaohao Maddahfar, Mahnaz Zhang, Ling Shi, Yuzhi Reece, Peter Halkon, Benjamin Aharonovich, Igor Xu, Xiaoxue Wang, Fan |
author_sort | Ding, Lei |
collection | PubMed |
description | Light scattering from nanoparticles is significant in nanoscale imaging, photon confinement. and biosensing. However, engineering the scattering spectrum, traditionally by modifying the geometric feature of particles, requires synthesis and fabrication with nanometre accuracy. Here it is reported that doping lanthanide ions can engineer the scattering properties of low‐refractive‐index nanoparticles. When the excitation wavelength matches the ion resonance frequency of lanthanide ions, the polarizability and the resulted scattering cross‐section of nanoparticles are dramatically enhanced. It is demonstrated that these purposely engineered nanoparticles can be used for interferometric scattering (iSCAT) microscopy. Conceptually, a dual‐modality iSCAT microscopy is further developed to identify different nanoparticle types in living HeLa cells. The work provides insight into engineering the scattering features by doping elements in nanomaterials, further inspiring exploration of the geometry‐independent scattering modulation strategy. |
format | Online Article Text |
id | pubmed-9661846 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-96618462022-11-14 Lanthanide Ion Resonance‐Driven Rayleigh Scattering of Nanoparticles for Dual‐Modality Interferometric Scattering Microscopy Ding, Lei Shan, Xuchen Wang, Dejiang Liu, Baolei Du, Ziqing Di, Xiangjun Chen, Chaohao Maddahfar, Mahnaz Zhang, Ling Shi, Yuzhi Reece, Peter Halkon, Benjamin Aharonovich, Igor Xu, Xiaoxue Wang, Fan Adv Sci (Weinh) Research Articles Light scattering from nanoparticles is significant in nanoscale imaging, photon confinement. and biosensing. However, engineering the scattering spectrum, traditionally by modifying the geometric feature of particles, requires synthesis and fabrication with nanometre accuracy. Here it is reported that doping lanthanide ions can engineer the scattering properties of low‐refractive‐index nanoparticles. When the excitation wavelength matches the ion resonance frequency of lanthanide ions, the polarizability and the resulted scattering cross‐section of nanoparticles are dramatically enhanced. It is demonstrated that these purposely engineered nanoparticles can be used for interferometric scattering (iSCAT) microscopy. Conceptually, a dual‐modality iSCAT microscopy is further developed to identify different nanoparticle types in living HeLa cells. The work provides insight into engineering the scattering features by doping elements in nanomaterials, further inspiring exploration of the geometry‐independent scattering modulation strategy. John Wiley and Sons Inc. 2022-08-17 /pmc/articles/PMC9661846/ /pubmed/35975425 http://dx.doi.org/10.1002/advs.202203354 Text en © 2022 The Authors. Advanced Science published by Wiley‐VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Ding, Lei Shan, Xuchen Wang, Dejiang Liu, Baolei Du, Ziqing Di, Xiangjun Chen, Chaohao Maddahfar, Mahnaz Zhang, Ling Shi, Yuzhi Reece, Peter Halkon, Benjamin Aharonovich, Igor Xu, Xiaoxue Wang, Fan Lanthanide Ion Resonance‐Driven Rayleigh Scattering of Nanoparticles for Dual‐Modality Interferometric Scattering Microscopy |
title | Lanthanide Ion Resonance‐Driven Rayleigh Scattering of Nanoparticles for Dual‐Modality Interferometric Scattering Microscopy |
title_full | Lanthanide Ion Resonance‐Driven Rayleigh Scattering of Nanoparticles for Dual‐Modality Interferometric Scattering Microscopy |
title_fullStr | Lanthanide Ion Resonance‐Driven Rayleigh Scattering of Nanoparticles for Dual‐Modality Interferometric Scattering Microscopy |
title_full_unstemmed | Lanthanide Ion Resonance‐Driven Rayleigh Scattering of Nanoparticles for Dual‐Modality Interferometric Scattering Microscopy |
title_short | Lanthanide Ion Resonance‐Driven Rayleigh Scattering of Nanoparticles for Dual‐Modality Interferometric Scattering Microscopy |
title_sort | lanthanide ion resonance‐driven rayleigh scattering of nanoparticles for dual‐modality interferometric scattering microscopy |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9661846/ https://www.ncbi.nlm.nih.gov/pubmed/35975425 http://dx.doi.org/10.1002/advs.202203354 |
work_keys_str_mv | AT dinglei lanthanideionresonancedrivenrayleighscatteringofnanoparticlesfordualmodalityinterferometricscatteringmicroscopy AT shanxuchen lanthanideionresonancedrivenrayleighscatteringofnanoparticlesfordualmodalityinterferometricscatteringmicroscopy AT wangdejiang lanthanideionresonancedrivenrayleighscatteringofnanoparticlesfordualmodalityinterferometricscatteringmicroscopy AT liubaolei lanthanideionresonancedrivenrayleighscatteringofnanoparticlesfordualmodalityinterferometricscatteringmicroscopy AT duziqing lanthanideionresonancedrivenrayleighscatteringofnanoparticlesfordualmodalityinterferometricscatteringmicroscopy AT dixiangjun lanthanideionresonancedrivenrayleighscatteringofnanoparticlesfordualmodalityinterferometricscatteringmicroscopy AT chenchaohao lanthanideionresonancedrivenrayleighscatteringofnanoparticlesfordualmodalityinterferometricscatteringmicroscopy AT maddahfarmahnaz lanthanideionresonancedrivenrayleighscatteringofnanoparticlesfordualmodalityinterferometricscatteringmicroscopy AT zhangling lanthanideionresonancedrivenrayleighscatteringofnanoparticlesfordualmodalityinterferometricscatteringmicroscopy AT shiyuzhi lanthanideionresonancedrivenrayleighscatteringofnanoparticlesfordualmodalityinterferometricscatteringmicroscopy AT reecepeter lanthanideionresonancedrivenrayleighscatteringofnanoparticlesfordualmodalityinterferometricscatteringmicroscopy AT halkonbenjamin lanthanideionresonancedrivenrayleighscatteringofnanoparticlesfordualmodalityinterferometricscatteringmicroscopy AT aharonovichigor lanthanideionresonancedrivenrayleighscatteringofnanoparticlesfordualmodalityinterferometricscatteringmicroscopy AT xuxiaoxue lanthanideionresonancedrivenrayleighscatteringofnanoparticlesfordualmodalityinterferometricscatteringmicroscopy AT wangfan lanthanideionresonancedrivenrayleighscatteringofnanoparticlesfordualmodalityinterferometricscatteringmicroscopy |