Cargando…

Lanthanide Ion Resonance‐Driven Rayleigh Scattering of Nanoparticles for Dual‐Modality Interferometric Scattering Microscopy

Light scattering from nanoparticles is significant in nanoscale imaging, photon confinement. and biosensing. However, engineering the scattering spectrum, traditionally by modifying the geometric feature of particles, requires synthesis and fabrication with nanometre accuracy. Here it is reported th...

Descripción completa

Detalles Bibliográficos
Autores principales: Ding, Lei, Shan, Xuchen, Wang, Dejiang, Liu, Baolei, Du, Ziqing, Di, Xiangjun, Chen, Chaohao, Maddahfar, Mahnaz, Zhang, Ling, Shi, Yuzhi, Reece, Peter, Halkon, Benjamin, Aharonovich, Igor, Xu, Xiaoxue, Wang, Fan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9661846/
https://www.ncbi.nlm.nih.gov/pubmed/35975425
http://dx.doi.org/10.1002/advs.202203354
_version_ 1784830564136648704
author Ding, Lei
Shan, Xuchen
Wang, Dejiang
Liu, Baolei
Du, Ziqing
Di, Xiangjun
Chen, Chaohao
Maddahfar, Mahnaz
Zhang, Ling
Shi, Yuzhi
Reece, Peter
Halkon, Benjamin
Aharonovich, Igor
Xu, Xiaoxue
Wang, Fan
author_facet Ding, Lei
Shan, Xuchen
Wang, Dejiang
Liu, Baolei
Du, Ziqing
Di, Xiangjun
Chen, Chaohao
Maddahfar, Mahnaz
Zhang, Ling
Shi, Yuzhi
Reece, Peter
Halkon, Benjamin
Aharonovich, Igor
Xu, Xiaoxue
Wang, Fan
author_sort Ding, Lei
collection PubMed
description Light scattering from nanoparticles is significant in nanoscale imaging, photon confinement. and biosensing. However, engineering the scattering spectrum, traditionally by modifying the geometric feature of particles, requires synthesis and fabrication with nanometre accuracy. Here it is reported that doping lanthanide ions can engineer the scattering properties of low‐refractive‐index nanoparticles. When the excitation wavelength matches the ion resonance frequency of lanthanide ions, the polarizability and the resulted scattering cross‐section of nanoparticles are dramatically enhanced. It is demonstrated that these purposely engineered nanoparticles can be used for interferometric scattering (iSCAT) microscopy. Conceptually, a dual‐modality iSCAT microscopy is further developed to identify different nanoparticle types in living HeLa cells. The work provides insight into engineering the scattering features by doping elements in nanomaterials, further inspiring exploration of the geometry‐independent scattering modulation strategy.
format Online
Article
Text
id pubmed-9661846
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-96618462022-11-14 Lanthanide Ion Resonance‐Driven Rayleigh Scattering of Nanoparticles for Dual‐Modality Interferometric Scattering Microscopy Ding, Lei Shan, Xuchen Wang, Dejiang Liu, Baolei Du, Ziqing Di, Xiangjun Chen, Chaohao Maddahfar, Mahnaz Zhang, Ling Shi, Yuzhi Reece, Peter Halkon, Benjamin Aharonovich, Igor Xu, Xiaoxue Wang, Fan Adv Sci (Weinh) Research Articles Light scattering from nanoparticles is significant in nanoscale imaging, photon confinement. and biosensing. However, engineering the scattering spectrum, traditionally by modifying the geometric feature of particles, requires synthesis and fabrication with nanometre accuracy. Here it is reported that doping lanthanide ions can engineer the scattering properties of low‐refractive‐index nanoparticles. When the excitation wavelength matches the ion resonance frequency of lanthanide ions, the polarizability and the resulted scattering cross‐section of nanoparticles are dramatically enhanced. It is demonstrated that these purposely engineered nanoparticles can be used for interferometric scattering (iSCAT) microscopy. Conceptually, a dual‐modality iSCAT microscopy is further developed to identify different nanoparticle types in living HeLa cells. The work provides insight into engineering the scattering features by doping elements in nanomaterials, further inspiring exploration of the geometry‐independent scattering modulation strategy. John Wiley and Sons Inc. 2022-08-17 /pmc/articles/PMC9661846/ /pubmed/35975425 http://dx.doi.org/10.1002/advs.202203354 Text en © 2022 The Authors. Advanced Science published by Wiley‐VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Ding, Lei
Shan, Xuchen
Wang, Dejiang
Liu, Baolei
Du, Ziqing
Di, Xiangjun
Chen, Chaohao
Maddahfar, Mahnaz
Zhang, Ling
Shi, Yuzhi
Reece, Peter
Halkon, Benjamin
Aharonovich, Igor
Xu, Xiaoxue
Wang, Fan
Lanthanide Ion Resonance‐Driven Rayleigh Scattering of Nanoparticles for Dual‐Modality Interferometric Scattering Microscopy
title Lanthanide Ion Resonance‐Driven Rayleigh Scattering of Nanoparticles for Dual‐Modality Interferometric Scattering Microscopy
title_full Lanthanide Ion Resonance‐Driven Rayleigh Scattering of Nanoparticles for Dual‐Modality Interferometric Scattering Microscopy
title_fullStr Lanthanide Ion Resonance‐Driven Rayleigh Scattering of Nanoparticles for Dual‐Modality Interferometric Scattering Microscopy
title_full_unstemmed Lanthanide Ion Resonance‐Driven Rayleigh Scattering of Nanoparticles for Dual‐Modality Interferometric Scattering Microscopy
title_short Lanthanide Ion Resonance‐Driven Rayleigh Scattering of Nanoparticles for Dual‐Modality Interferometric Scattering Microscopy
title_sort lanthanide ion resonance‐driven rayleigh scattering of nanoparticles for dual‐modality interferometric scattering microscopy
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9661846/
https://www.ncbi.nlm.nih.gov/pubmed/35975425
http://dx.doi.org/10.1002/advs.202203354
work_keys_str_mv AT dinglei lanthanideionresonancedrivenrayleighscatteringofnanoparticlesfordualmodalityinterferometricscatteringmicroscopy
AT shanxuchen lanthanideionresonancedrivenrayleighscatteringofnanoparticlesfordualmodalityinterferometricscatteringmicroscopy
AT wangdejiang lanthanideionresonancedrivenrayleighscatteringofnanoparticlesfordualmodalityinterferometricscatteringmicroscopy
AT liubaolei lanthanideionresonancedrivenrayleighscatteringofnanoparticlesfordualmodalityinterferometricscatteringmicroscopy
AT duziqing lanthanideionresonancedrivenrayleighscatteringofnanoparticlesfordualmodalityinterferometricscatteringmicroscopy
AT dixiangjun lanthanideionresonancedrivenrayleighscatteringofnanoparticlesfordualmodalityinterferometricscatteringmicroscopy
AT chenchaohao lanthanideionresonancedrivenrayleighscatteringofnanoparticlesfordualmodalityinterferometricscatteringmicroscopy
AT maddahfarmahnaz lanthanideionresonancedrivenrayleighscatteringofnanoparticlesfordualmodalityinterferometricscatteringmicroscopy
AT zhangling lanthanideionresonancedrivenrayleighscatteringofnanoparticlesfordualmodalityinterferometricscatteringmicroscopy
AT shiyuzhi lanthanideionresonancedrivenrayleighscatteringofnanoparticlesfordualmodalityinterferometricscatteringmicroscopy
AT reecepeter lanthanideionresonancedrivenrayleighscatteringofnanoparticlesfordualmodalityinterferometricscatteringmicroscopy
AT halkonbenjamin lanthanideionresonancedrivenrayleighscatteringofnanoparticlesfordualmodalityinterferometricscatteringmicroscopy
AT aharonovichigor lanthanideionresonancedrivenrayleighscatteringofnanoparticlesfordualmodalityinterferometricscatteringmicroscopy
AT xuxiaoxue lanthanideionresonancedrivenrayleighscatteringofnanoparticlesfordualmodalityinterferometricscatteringmicroscopy
AT wangfan lanthanideionresonancedrivenrayleighscatteringofnanoparticlesfordualmodalityinterferometricscatteringmicroscopy