Cargando…

Photoluminescence Intensity Enhancement in Tin Halide Perovskites

The prevalence of background hole doping in tin halide perovskites usually dominates their recombination dynamics. The addition of excess Sn halide source to the precursor solution is the most frequently used approach to reduce the hole doping and reveals photo‐carrier dynamics related to defects ac...

Descripción completa

Detalles Bibliográficos
Autores principales: Poli, Isabella, Ambrosio, Francesco, Treglia, Antonella, Berger, Felix J., Prato, Mirko, Albaqami, Munirah D., De Angelis, Filippo, Petrozza, Annamaria
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9661860/
https://www.ncbi.nlm.nih.gov/pubmed/36109174
http://dx.doi.org/10.1002/advs.202202795
_version_ 1784830567308591104
author Poli, Isabella
Ambrosio, Francesco
Treglia, Antonella
Berger, Felix J.
Prato, Mirko
Albaqami, Munirah D.
De Angelis, Filippo
Petrozza, Annamaria
author_facet Poli, Isabella
Ambrosio, Francesco
Treglia, Antonella
Berger, Felix J.
Prato, Mirko
Albaqami, Munirah D.
De Angelis, Filippo
Petrozza, Annamaria
author_sort Poli, Isabella
collection PubMed
description The prevalence of background hole doping in tin halide perovskites usually dominates their recombination dynamics. The addition of excess Sn halide source to the precursor solution is the most frequently used approach to reduce the hole doping and reveals photo‐carrier dynamics related to defects activity. This study presents an experimental and theoretical investigation on defects under light irradiation in tin halide perovskites by combining measurements of photoluminescence with first principles computational modeling. It finds that tin perovskite thin films prepared with an excess of Sn halide sources exhibit an enhancement of the photoluminescence intensity over time under continuous excitation in inert atmosphere. The authors propose a model in which light irradiation promotes the annihilation of V(Sn) (2−)/Sn(i) (2+) Frenkel pairs, reducing the deep carrier trapping centers associated with such defect and increasing the radiative recombination. Importantly, these observations can be traced in the open‐circuit voltage dynamics of tin‐based halide perovskite solar cells, implying the relevance of controlling the Sn photochemistry to stabilize tin perovskite devices.
format Online
Article
Text
id pubmed-9661860
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-96618602022-11-14 Photoluminescence Intensity Enhancement in Tin Halide Perovskites Poli, Isabella Ambrosio, Francesco Treglia, Antonella Berger, Felix J. Prato, Mirko Albaqami, Munirah D. De Angelis, Filippo Petrozza, Annamaria Adv Sci (Weinh) Research Articles The prevalence of background hole doping in tin halide perovskites usually dominates their recombination dynamics. The addition of excess Sn halide source to the precursor solution is the most frequently used approach to reduce the hole doping and reveals photo‐carrier dynamics related to defects activity. This study presents an experimental and theoretical investigation on defects under light irradiation in tin halide perovskites by combining measurements of photoluminescence with first principles computational modeling. It finds that tin perovskite thin films prepared with an excess of Sn halide sources exhibit an enhancement of the photoluminescence intensity over time under continuous excitation in inert atmosphere. The authors propose a model in which light irradiation promotes the annihilation of V(Sn) (2−)/Sn(i) (2+) Frenkel pairs, reducing the deep carrier trapping centers associated with such defect and increasing the radiative recombination. Importantly, these observations can be traced in the open‐circuit voltage dynamics of tin‐based halide perovskite solar cells, implying the relevance of controlling the Sn photochemistry to stabilize tin perovskite devices. John Wiley and Sons Inc. 2022-09-15 /pmc/articles/PMC9661860/ /pubmed/36109174 http://dx.doi.org/10.1002/advs.202202795 Text en © 2022 The Authors. Advanced Science published by Wiley‐VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Poli, Isabella
Ambrosio, Francesco
Treglia, Antonella
Berger, Felix J.
Prato, Mirko
Albaqami, Munirah D.
De Angelis, Filippo
Petrozza, Annamaria
Photoluminescence Intensity Enhancement in Tin Halide Perovskites
title Photoluminescence Intensity Enhancement in Tin Halide Perovskites
title_full Photoluminescence Intensity Enhancement in Tin Halide Perovskites
title_fullStr Photoluminescence Intensity Enhancement in Tin Halide Perovskites
title_full_unstemmed Photoluminescence Intensity Enhancement in Tin Halide Perovskites
title_short Photoluminescence Intensity Enhancement in Tin Halide Perovskites
title_sort photoluminescence intensity enhancement in tin halide perovskites
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9661860/
https://www.ncbi.nlm.nih.gov/pubmed/36109174
http://dx.doi.org/10.1002/advs.202202795
work_keys_str_mv AT poliisabella photoluminescenceintensityenhancementintinhalideperovskites
AT ambrosiofrancesco photoluminescenceintensityenhancementintinhalideperovskites
AT tregliaantonella photoluminescenceintensityenhancementintinhalideperovskites
AT bergerfelixj photoluminescenceintensityenhancementintinhalideperovskites
AT pratomirko photoluminescenceintensityenhancementintinhalideperovskites
AT albaqamimunirahd photoluminescenceintensityenhancementintinhalideperovskites
AT deangelisfilippo photoluminescenceintensityenhancementintinhalideperovskites
AT petrozzaannamaria photoluminescenceintensityenhancementintinhalideperovskites