Cargando…
Kidney microbiota dysbiosis contributes to the development of hypertension
Gut microbiota dysbiosis promotes metabolic syndromes (e.g., hypertension); however, the patterns that drive hypertensive pathology and could be targeted for therapeutic intervention are unclear. We hypothesized that gut microbes might translocate to the kidney to trigger hypertension. We aimed to u...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9662196/ https://www.ncbi.nlm.nih.gov/pubmed/36369946 http://dx.doi.org/10.1080/19490976.2022.2143220 |
_version_ | 1784830640529604608 |
---|---|
author | Liu, Xin-Yu Li, Jing Zhang, Yamei Fan, Luyun Xia, Yanli Wu, Yongyang Chen, Junru Zhao, Xinyu Gao, Qiannan Xu, Bing Nie, Chunlai Li, Zhengyu Tong, Aiping Wang, Wenjie Cai, Jun |
author_facet | Liu, Xin-Yu Li, Jing Zhang, Yamei Fan, Luyun Xia, Yanli Wu, Yongyang Chen, Junru Zhao, Xinyu Gao, Qiannan Xu, Bing Nie, Chunlai Li, Zhengyu Tong, Aiping Wang, Wenjie Cai, Jun |
author_sort | Liu, Xin-Yu |
collection | PubMed |
description | Gut microbiota dysbiosis promotes metabolic syndromes (e.g., hypertension); however, the patterns that drive hypertensive pathology and could be targeted for therapeutic intervention are unclear. We hypothesized that gut microbes might translocate to the kidney to trigger hypertension. We aimed to uncover their method of colonization, and thereby how to maintain blood pressure homeostasis. Using combined approaches based on fluorescence in situ hybridization (FISH) and immunofluorescence staining, electron microscopy analysis, bacterial cultures, species identification, and RNA-sequencing-based meta-transcriptomics, we first demonstrated the presence of bacteria within the kidney of spontaneously hypertensive rats (SHRs) and its normotensive counterpart, Wistar-Kyoto rats (WKYs), and patients with hypertension. Translocated renal bacteria were coated with secretory IgA (sIgA) or remained dormant in the L-form. Klebsiella pneumoniae (K.pn) was identified in the kidneys of germ-free (GF) mice following intestinal transplantation, which suggested an influx of gut bacteria into the kidneys. Renal bacterial taxa and their function are associated with hypertension. Hypertensive hosts showed increased richness in the pathobionts of their kidneys, which were partly derived from the gastrointestinal tract. We also demonstrated the indispensable role of bacterial IgA proteases in the translocation of live microbes. Furthermore, Tartary buckwheat dietary intervention reduced blood pressure and modulated the core renal flora-host ecosystem to near-normal states. Taken together, the unique patterns of viable and dormant bacteria in the kidney provide insight into the pathogenesis of non-communicable chronic diseases and cardiometabolic diseases (e.g., hypertension), and may lead to potential novel microbiota-targeted dietary therapies. |
format | Online Article Text |
id | pubmed-9662196 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Taylor & Francis |
record_format | MEDLINE/PubMed |
spelling | pubmed-96621962022-11-15 Kidney microbiota dysbiosis contributes to the development of hypertension Liu, Xin-Yu Li, Jing Zhang, Yamei Fan, Luyun Xia, Yanli Wu, Yongyang Chen, Junru Zhao, Xinyu Gao, Qiannan Xu, Bing Nie, Chunlai Li, Zhengyu Tong, Aiping Wang, Wenjie Cai, Jun Gut Microbes Research Paper Gut microbiota dysbiosis promotes metabolic syndromes (e.g., hypertension); however, the patterns that drive hypertensive pathology and could be targeted for therapeutic intervention are unclear. We hypothesized that gut microbes might translocate to the kidney to trigger hypertension. We aimed to uncover their method of colonization, and thereby how to maintain blood pressure homeostasis. Using combined approaches based on fluorescence in situ hybridization (FISH) and immunofluorescence staining, electron microscopy analysis, bacterial cultures, species identification, and RNA-sequencing-based meta-transcriptomics, we first demonstrated the presence of bacteria within the kidney of spontaneously hypertensive rats (SHRs) and its normotensive counterpart, Wistar-Kyoto rats (WKYs), and patients with hypertension. Translocated renal bacteria were coated with secretory IgA (sIgA) or remained dormant in the L-form. Klebsiella pneumoniae (K.pn) was identified in the kidneys of germ-free (GF) mice following intestinal transplantation, which suggested an influx of gut bacteria into the kidneys. Renal bacterial taxa and their function are associated with hypertension. Hypertensive hosts showed increased richness in the pathobionts of their kidneys, which were partly derived from the gastrointestinal tract. We also demonstrated the indispensable role of bacterial IgA proteases in the translocation of live microbes. Furthermore, Tartary buckwheat dietary intervention reduced blood pressure and modulated the core renal flora-host ecosystem to near-normal states. Taken together, the unique patterns of viable and dormant bacteria in the kidney provide insight into the pathogenesis of non-communicable chronic diseases and cardiometabolic diseases (e.g., hypertension), and may lead to potential novel microbiota-targeted dietary therapies. Taylor & Francis 2022-11-12 /pmc/articles/PMC9662196/ /pubmed/36369946 http://dx.doi.org/10.1080/19490976.2022.2143220 Text en © 2022 The Author(s). Published with license by Taylor & Francis Group, LLC. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Paper Liu, Xin-Yu Li, Jing Zhang, Yamei Fan, Luyun Xia, Yanli Wu, Yongyang Chen, Junru Zhao, Xinyu Gao, Qiannan Xu, Bing Nie, Chunlai Li, Zhengyu Tong, Aiping Wang, Wenjie Cai, Jun Kidney microbiota dysbiosis contributes to the development of hypertension |
title | Kidney microbiota dysbiosis contributes to the development of hypertension |
title_full | Kidney microbiota dysbiosis contributes to the development of hypertension |
title_fullStr | Kidney microbiota dysbiosis contributes to the development of hypertension |
title_full_unstemmed | Kidney microbiota dysbiosis contributes to the development of hypertension |
title_short | Kidney microbiota dysbiosis contributes to the development of hypertension |
title_sort | kidney microbiota dysbiosis contributes to the development of hypertension |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9662196/ https://www.ncbi.nlm.nih.gov/pubmed/36369946 http://dx.doi.org/10.1080/19490976.2022.2143220 |
work_keys_str_mv | AT liuxinyu kidneymicrobiotadysbiosiscontributestothedevelopmentofhypertension AT lijing kidneymicrobiotadysbiosiscontributestothedevelopmentofhypertension AT zhangyamei kidneymicrobiotadysbiosiscontributestothedevelopmentofhypertension AT fanluyun kidneymicrobiotadysbiosiscontributestothedevelopmentofhypertension AT xiayanli kidneymicrobiotadysbiosiscontributestothedevelopmentofhypertension AT wuyongyang kidneymicrobiotadysbiosiscontributestothedevelopmentofhypertension AT chenjunru kidneymicrobiotadysbiosiscontributestothedevelopmentofhypertension AT zhaoxinyu kidneymicrobiotadysbiosiscontributestothedevelopmentofhypertension AT gaoqiannan kidneymicrobiotadysbiosiscontributestothedevelopmentofhypertension AT xubing kidneymicrobiotadysbiosiscontributestothedevelopmentofhypertension AT niechunlai kidneymicrobiotadysbiosiscontributestothedevelopmentofhypertension AT lizhengyu kidneymicrobiotadysbiosiscontributestothedevelopmentofhypertension AT tongaiping kidneymicrobiotadysbiosiscontributestothedevelopmentofhypertension AT wangwenjie kidneymicrobiotadysbiosiscontributestothedevelopmentofhypertension AT caijun kidneymicrobiotadysbiosiscontributestothedevelopmentofhypertension |