Cargando…

Resistance to Beta-cypermethrin, Azadirachtin, and Matrine, and Biochemical Characterization of Field Populations of Oedaleus asiaticus (Bey-Bienko) in Inner Mongolia, Northern China

Oedaleus asiaticus (Bey-Bienko) is an economically devastating locust species found in grassland and pastoral areas of the Inner Mongolia region of northern China. In this study, resistance to three frequently used insecticides (beta-cypermethrin, matrine, and azadirachtin) was investigated in six f...

Descripción completa

Detalles Bibliográficos
Autores principales: Gao, Shujing, Tan, Yao, Han, Haibin, Guo, Na, Gao, Haiyan, Xu, Linbo, Lin, Kejian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9662316/
https://www.ncbi.nlm.nih.gov/pubmed/36374481
http://dx.doi.org/10.1093/jisesa/ieac063
_version_ 1784830659873734656
author Gao, Shujing
Tan, Yao
Han, Haibin
Guo, Na
Gao, Haiyan
Xu, Linbo
Lin, Kejian
author_facet Gao, Shujing
Tan, Yao
Han, Haibin
Guo, Na
Gao, Haiyan
Xu, Linbo
Lin, Kejian
author_sort Gao, Shujing
collection PubMed
description Oedaleus asiaticus (Bey-Bienko) is an economically devastating locust species found in grassland and pastoral areas of the Inner Mongolia region of northern China. In this study, resistance to three frequently used insecticides (beta-cypermethrin, matrine, and azadirachtin) was investigated in six field populations of O. asiaticus using the leaf-dip bioassay method. The inhibitory effects of synergists and the activities of detoxification enzyme activities in the different populations were determined to explore potential biochemical resistance mechanisms. The results showed that the field populations SB (resistance ratio [RR] = 7.85), ZB (RR = 5.64), and DB (RR = 6.75) had developed low levels of resistance to beta-cypermethrin compared with a susceptible control strain. Both the SB (RR = 5.92) and XC (RR = 6.38) populations had also developed low levels of resistance against matrine, with the other populations remaining susceptible to both beta-cypermethrin and matrine. All field populations were susceptible to azadirachtin. Synergism analysis showed that triphenyl phosphate (TPP) and diethyl-maleate (DEM) increased the toxicity of beta-cypermethrin significantly in the SB population, while the synergistic effects of TPP, piperonyl butoxide (PBO), and DEM on the toxicity of matrine were higher in SB (SR 3.86, 4.18, and 3.07, respectively) than in SS (SR 2.24, 2.86, and 2.29, respectively), but no synergistic effects of TPP, PBO, and DEM on azadirachtin were found. Biochemical assays showed that the activities of carboxylesterases (CarEs) and glutathione-S-transferases (GSTs) were significantly raised in all field populations of O. asiaticus, with a significant positive correlation observed between beta-cypermethrin resistance and CarE activity. The activities of cytochrome P450 monooxygenases (P450) and multi-function oxidases (MFO) were elevated in all six field populations, and P450 activity displayed strong positive correlations with the three insecticides. Our findings suggest that resistance to beta-cypermethrin in O. asiaticus may be mainly attributed to elevated CarE and GST activities, while P450 plays an important role in metabolizing matrine and azadirachtin. Our study provides insights that will help improve insecticide resistance management strategies.
format Online
Article
Text
id pubmed-9662316
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-96623162022-11-14 Resistance to Beta-cypermethrin, Azadirachtin, and Matrine, and Biochemical Characterization of Field Populations of Oedaleus asiaticus (Bey-Bienko) in Inner Mongolia, Northern China Gao, Shujing Tan, Yao Han, Haibin Guo, Na Gao, Haiyan Xu, Linbo Lin, Kejian J Insect Sci Research Oedaleus asiaticus (Bey-Bienko) is an economically devastating locust species found in grassland and pastoral areas of the Inner Mongolia region of northern China. In this study, resistance to three frequently used insecticides (beta-cypermethrin, matrine, and azadirachtin) was investigated in six field populations of O. asiaticus using the leaf-dip bioassay method. The inhibitory effects of synergists and the activities of detoxification enzyme activities in the different populations were determined to explore potential biochemical resistance mechanisms. The results showed that the field populations SB (resistance ratio [RR] = 7.85), ZB (RR = 5.64), and DB (RR = 6.75) had developed low levels of resistance to beta-cypermethrin compared with a susceptible control strain. Both the SB (RR = 5.92) and XC (RR = 6.38) populations had also developed low levels of resistance against matrine, with the other populations remaining susceptible to both beta-cypermethrin and matrine. All field populations were susceptible to azadirachtin. Synergism analysis showed that triphenyl phosphate (TPP) and diethyl-maleate (DEM) increased the toxicity of beta-cypermethrin significantly in the SB population, while the synergistic effects of TPP, piperonyl butoxide (PBO), and DEM on the toxicity of matrine were higher in SB (SR 3.86, 4.18, and 3.07, respectively) than in SS (SR 2.24, 2.86, and 2.29, respectively), but no synergistic effects of TPP, PBO, and DEM on azadirachtin were found. Biochemical assays showed that the activities of carboxylesterases (CarEs) and glutathione-S-transferases (GSTs) were significantly raised in all field populations of O. asiaticus, with a significant positive correlation observed between beta-cypermethrin resistance and CarE activity. The activities of cytochrome P450 monooxygenases (P450) and multi-function oxidases (MFO) were elevated in all six field populations, and P450 activity displayed strong positive correlations with the three insecticides. Our findings suggest that resistance to beta-cypermethrin in O. asiaticus may be mainly attributed to elevated CarE and GST activities, while P450 plays an important role in metabolizing matrine and azadirachtin. Our study provides insights that will help improve insecticide resistance management strategies. Oxford University Press 2022-11-14 /pmc/articles/PMC9662316/ /pubmed/36374481 http://dx.doi.org/10.1093/jisesa/ieac063 Text en © The Author(s) 2022. Published by Oxford University Press on behalf of Entomological Society of America. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research
Gao, Shujing
Tan, Yao
Han, Haibin
Guo, Na
Gao, Haiyan
Xu, Linbo
Lin, Kejian
Resistance to Beta-cypermethrin, Azadirachtin, and Matrine, and Biochemical Characterization of Field Populations of Oedaleus asiaticus (Bey-Bienko) in Inner Mongolia, Northern China
title Resistance to Beta-cypermethrin, Azadirachtin, and Matrine, and Biochemical Characterization of Field Populations of Oedaleus asiaticus (Bey-Bienko) in Inner Mongolia, Northern China
title_full Resistance to Beta-cypermethrin, Azadirachtin, and Matrine, and Biochemical Characterization of Field Populations of Oedaleus asiaticus (Bey-Bienko) in Inner Mongolia, Northern China
title_fullStr Resistance to Beta-cypermethrin, Azadirachtin, and Matrine, and Biochemical Characterization of Field Populations of Oedaleus asiaticus (Bey-Bienko) in Inner Mongolia, Northern China
title_full_unstemmed Resistance to Beta-cypermethrin, Azadirachtin, and Matrine, and Biochemical Characterization of Field Populations of Oedaleus asiaticus (Bey-Bienko) in Inner Mongolia, Northern China
title_short Resistance to Beta-cypermethrin, Azadirachtin, and Matrine, and Biochemical Characterization of Field Populations of Oedaleus asiaticus (Bey-Bienko) in Inner Mongolia, Northern China
title_sort resistance to beta-cypermethrin, azadirachtin, and matrine, and biochemical characterization of field populations of oedaleus asiaticus (bey-bienko) in inner mongolia, northern china
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9662316/
https://www.ncbi.nlm.nih.gov/pubmed/36374481
http://dx.doi.org/10.1093/jisesa/ieac063
work_keys_str_mv AT gaoshujing resistancetobetacypermethrinazadirachtinandmatrineandbiochemicalcharacterizationoffieldpopulationsofoedaleusasiaticusbeybienkoininnermongolianorthernchina
AT tanyao resistancetobetacypermethrinazadirachtinandmatrineandbiochemicalcharacterizationoffieldpopulationsofoedaleusasiaticusbeybienkoininnermongolianorthernchina
AT hanhaibin resistancetobetacypermethrinazadirachtinandmatrineandbiochemicalcharacterizationoffieldpopulationsofoedaleusasiaticusbeybienkoininnermongolianorthernchina
AT guona resistancetobetacypermethrinazadirachtinandmatrineandbiochemicalcharacterizationoffieldpopulationsofoedaleusasiaticusbeybienkoininnermongolianorthernchina
AT gaohaiyan resistancetobetacypermethrinazadirachtinandmatrineandbiochemicalcharacterizationoffieldpopulationsofoedaleusasiaticusbeybienkoininnermongolianorthernchina
AT xulinbo resistancetobetacypermethrinazadirachtinandmatrineandbiochemicalcharacterizationoffieldpopulationsofoedaleusasiaticusbeybienkoininnermongolianorthernchina
AT linkejian resistancetobetacypermethrinazadirachtinandmatrineandbiochemicalcharacterizationoffieldpopulationsofoedaleusasiaticusbeybienkoininnermongolianorthernchina