Cargando…
Textural feature based intelligent approach for neurological abnormality detection from brain signal data
The diagnosis of neurological diseases is one of the biggest challenges in modern medicine, which is a major issue at the moment. Electroencephalography (EEG) recordings is usually used to identify various neurological diseases. EEG produces a large volume of multi-channel time-series data that neur...
Autores principales: | Tawhid, Md. Nurul Ahad, Siuly, Siuly, Wang, Kate, Wang, Hua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9662730/ https://www.ncbi.nlm.nih.gov/pubmed/36374850 http://dx.doi.org/10.1371/journal.pone.0277555 |
Ejemplares similares
-
A spectrogram image based intelligent technique for automatic detection of autism spectrum disorder from EEG
por: Tawhid, Md. Nurul Ahad, et al.
Publicado: (2021) -
Exploring Sampling in the Detection of Multicategory EEG Signals
por: Siuly, Siuly, et al.
Publicado: (2015) -
Exploring deep residual network based features for automatic schizophrenia detection from EEG
por: Siuly, Siuly, et al.
Publicado: (2023) -
SchizoGoogLeNet: The GoogLeNet-Based Deep Feature Extraction Design for Automatic Detection of Schizophrenia
por: Siuly, Siuly, et al.
Publicado: (2022) -
Exploring Douglas-Peucker Algorithm in the Detection of Epileptic Seizure from Multicategory EEG Signals
por: Zarei, Roozbeh, et al.
Publicado: (2019)