Cargando…
Structure learning enhances concept formation in synthetic Active Inference agents
Humans display astonishing skill in learning about the environment in which they operate. They assimilate a rich set of affordances and interrelations among different elements in particular contexts, and form flexible abstractions (i.e., concepts) that can be generalised and leveraged with ease. To...
Autores principales: | Neacsu, Victorita, Mirza, M. Berk, Adams, Rick A., Friston, Karl J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9662737/ https://www.ncbi.nlm.nih.gov/pubmed/36374909 http://dx.doi.org/10.1371/journal.pone.0277199 |
Ejemplares similares
-
Synthetic Spatial Foraging With Active Inference in a Geocaching Task
por: Neacsu, Victorita, et al.
Publicado: (2022) -
Introducing a Bayesian model of selective attention based on active inference
por: Mirza, M. Berk, et al.
Publicado: (2019) -
Scene Construction, Visual Foraging, and Active Inference
por: Mirza, M. Berk, et al.
Publicado: (2016) -
Active inference on discrete state-spaces: A synthesis
por: Da Costa, Lancelot, et al.
Publicado: (2020) -
An Active Inference Approach to Modeling Structure Learning: Concept Learning as an Example Case
por: Smith, Ryan, et al.
Publicado: (2020)