Cargando…
Identifying geopolitical event precursors using attention-based LSTMs
Forecasting societal events such as civil unrest, mass protests, and violent conflicts is a challenging problem with several important real-world applications in planning and policy making. While traditional forecasting approaches have typically relied on historical time series for generating such f...
Autores principales: | Hossain, K. S. M. Tozammel, Harutyunyan, Hrayr, Ning, Yue, Kennedy, Brendan, Ramakrishnan, Naren, Galstyan, Aram |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9662789/ https://www.ncbi.nlm.nih.gov/pubmed/36388399 http://dx.doi.org/10.3389/frai.2022.893875 |
Ejemplares similares
-
Child-Sum EATree-LSTMs: enhanced attentive Child-Sum Tree-LSTMs for biomedical event extraction
por: Wang, Lei, et al.
Publicado: (2023) -
Image classification model based on large kernel attention mechanism and relative position self-attention mechanism
por: Liu, Siqi, et al.
Publicado: (2023) -
Self-supervised recurrent depth estimation with attention mechanisms
por: Makarov, Ilya, et al.
Publicado: (2022) -
Stochastic attentions and context learning for person re-identification
por: Perwaiz, Nazia, et al.
Publicado: (2021) -
Improving Adversarial Robustness via Attention and Adversarial Logit Pairing
por: Li, Xingjian, et al.
Publicado: (2022)