Cargando…
CBFA2T3-GLIS2 model of pediatric acute megakaryoblastic leukemia identifies FOLR1 as a CAR T cell target
The CBFA2T3-GLIS2 (C/G) fusion is a product of a cryptic translocation primarily seen in infants and early childhood and is associated with dismal outcome. Here, we demonstrate that the expression of the C/G oncogenic fusion protein promotes the transformation of human cord blood hematopoietic stem...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Clinical Investigation
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9663156/ https://www.ncbi.nlm.nih.gov/pubmed/36136600 http://dx.doi.org/10.1172/JCI157101 |
_version_ | 1784830809792839680 |
---|---|
author | Le, Quy Hadland, Brandon Smith, Jenny L. Leonti, Amanda Huang, Benjamin J. Ries, Rhonda Hylkema, Tiffany A. Castro, Sommer Tang, Thao T. McKay, Cyd N. Perkins, LaKeisha Pardo, Laura Sarthy, Jay Beckman, Amy K. Williams, Robin Idemmili, Rhonda Furlan, Scott Ishida, Takashi Call, Lindsey Srivastava, Shivani Loeb, Anisha M. Milano, Filippo Imren, Suzan Morris, Shelli M. Pakiam, Fiona Olson, Jim M. Loken, Michael R. Brodersen, Lisa Riddell, Stanley R. Tarlock, Katherine Bernstein, Irwin D. Loeb, Keith R. Meshinchi, Soheil |
author_facet | Le, Quy Hadland, Brandon Smith, Jenny L. Leonti, Amanda Huang, Benjamin J. Ries, Rhonda Hylkema, Tiffany A. Castro, Sommer Tang, Thao T. McKay, Cyd N. Perkins, LaKeisha Pardo, Laura Sarthy, Jay Beckman, Amy K. Williams, Robin Idemmili, Rhonda Furlan, Scott Ishida, Takashi Call, Lindsey Srivastava, Shivani Loeb, Anisha M. Milano, Filippo Imren, Suzan Morris, Shelli M. Pakiam, Fiona Olson, Jim M. Loken, Michael R. Brodersen, Lisa Riddell, Stanley R. Tarlock, Katherine Bernstein, Irwin D. Loeb, Keith R. Meshinchi, Soheil |
author_sort | Le, Quy |
collection | PubMed |
description | The CBFA2T3-GLIS2 (C/G) fusion is a product of a cryptic translocation primarily seen in infants and early childhood and is associated with dismal outcome. Here, we demonstrate that the expression of the C/G oncogenic fusion protein promotes the transformation of human cord blood hematopoietic stem and progenitor cells (CB HSPCs) in an endothelial cell coculture system that recapitulates the transcriptome, morphology, and immunophenotype of C/G acute myeloid leukemia (AML) and induces highly aggressive leukemia in xenograft models. Interrogating the transcriptome of C/G-CB cells and primary C/G AML identified a library of C/G-fusion-specific genes that are potential targets for therapy. We developed chimeric antigen receptor (CAR) T cells directed against one of the targets, folate receptor α (FOLR1), and demonstrated their preclinical efficacy against C/G AML using in vitro and xenograft models. FOLR1 is also expressed in renal and pulmonary epithelium, raising concerns for toxicity that must be addressed for the clinical application of this therapy. Our findings underscore the role of the endothelial niche in promoting leukemic transformation of C/G-transduced CB HSPCs. Furthermore, this work has broad implications for studies of leukemogenesis applicable to a variety of oncogenic fusion-driven pediatric leukemias, providing a robust and tractable model system to characterize the molecular mechanisms of leukemogenesis and identify biomarkers for disease diagnosis and targets for therapy. |
format | Online Article Text |
id | pubmed-9663156 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Society for Clinical Investigation |
record_format | MEDLINE/PubMed |
spelling | pubmed-96631562022-11-17 CBFA2T3-GLIS2 model of pediatric acute megakaryoblastic leukemia identifies FOLR1 as a CAR T cell target Le, Quy Hadland, Brandon Smith, Jenny L. Leonti, Amanda Huang, Benjamin J. Ries, Rhonda Hylkema, Tiffany A. Castro, Sommer Tang, Thao T. McKay, Cyd N. Perkins, LaKeisha Pardo, Laura Sarthy, Jay Beckman, Amy K. Williams, Robin Idemmili, Rhonda Furlan, Scott Ishida, Takashi Call, Lindsey Srivastava, Shivani Loeb, Anisha M. Milano, Filippo Imren, Suzan Morris, Shelli M. Pakiam, Fiona Olson, Jim M. Loken, Michael R. Brodersen, Lisa Riddell, Stanley R. Tarlock, Katherine Bernstein, Irwin D. Loeb, Keith R. Meshinchi, Soheil J Clin Invest Research Article The CBFA2T3-GLIS2 (C/G) fusion is a product of a cryptic translocation primarily seen in infants and early childhood and is associated with dismal outcome. Here, we demonstrate that the expression of the C/G oncogenic fusion protein promotes the transformation of human cord blood hematopoietic stem and progenitor cells (CB HSPCs) in an endothelial cell coculture system that recapitulates the transcriptome, morphology, and immunophenotype of C/G acute myeloid leukemia (AML) and induces highly aggressive leukemia in xenograft models. Interrogating the transcriptome of C/G-CB cells and primary C/G AML identified a library of C/G-fusion-specific genes that are potential targets for therapy. We developed chimeric antigen receptor (CAR) T cells directed against one of the targets, folate receptor α (FOLR1), and demonstrated their preclinical efficacy against C/G AML using in vitro and xenograft models. FOLR1 is also expressed in renal and pulmonary epithelium, raising concerns for toxicity that must be addressed for the clinical application of this therapy. Our findings underscore the role of the endothelial niche in promoting leukemic transformation of C/G-transduced CB HSPCs. Furthermore, this work has broad implications for studies of leukemogenesis applicable to a variety of oncogenic fusion-driven pediatric leukemias, providing a robust and tractable model system to characterize the molecular mechanisms of leukemogenesis and identify biomarkers for disease diagnosis and targets for therapy. American Society for Clinical Investigation 2022-11-15 /pmc/articles/PMC9663156/ /pubmed/36136600 http://dx.doi.org/10.1172/JCI157101 Text en © 2022 Le et al. https://creativecommons.org/licenses/by/4.0/This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Research Article Le, Quy Hadland, Brandon Smith, Jenny L. Leonti, Amanda Huang, Benjamin J. Ries, Rhonda Hylkema, Tiffany A. Castro, Sommer Tang, Thao T. McKay, Cyd N. Perkins, LaKeisha Pardo, Laura Sarthy, Jay Beckman, Amy K. Williams, Robin Idemmili, Rhonda Furlan, Scott Ishida, Takashi Call, Lindsey Srivastava, Shivani Loeb, Anisha M. Milano, Filippo Imren, Suzan Morris, Shelli M. Pakiam, Fiona Olson, Jim M. Loken, Michael R. Brodersen, Lisa Riddell, Stanley R. Tarlock, Katherine Bernstein, Irwin D. Loeb, Keith R. Meshinchi, Soheil CBFA2T3-GLIS2 model of pediatric acute megakaryoblastic leukemia identifies FOLR1 as a CAR T cell target |
title | CBFA2T3-GLIS2 model of pediatric acute megakaryoblastic leukemia identifies FOLR1 as a CAR T cell target |
title_full | CBFA2T3-GLIS2 model of pediatric acute megakaryoblastic leukemia identifies FOLR1 as a CAR T cell target |
title_fullStr | CBFA2T3-GLIS2 model of pediatric acute megakaryoblastic leukemia identifies FOLR1 as a CAR T cell target |
title_full_unstemmed | CBFA2T3-GLIS2 model of pediatric acute megakaryoblastic leukemia identifies FOLR1 as a CAR T cell target |
title_short | CBFA2T3-GLIS2 model of pediatric acute megakaryoblastic leukemia identifies FOLR1 as a CAR T cell target |
title_sort | cbfa2t3-glis2 model of pediatric acute megakaryoblastic leukemia identifies folr1 as a car t cell target |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9663156/ https://www.ncbi.nlm.nih.gov/pubmed/36136600 http://dx.doi.org/10.1172/JCI157101 |
work_keys_str_mv | AT lequy cbfa2t3glis2modelofpediatricacutemegakaryoblasticleukemiaidentifiesfolr1asacartcelltarget AT hadlandbrandon cbfa2t3glis2modelofpediatricacutemegakaryoblasticleukemiaidentifiesfolr1asacartcelltarget AT smithjennyl cbfa2t3glis2modelofpediatricacutemegakaryoblasticleukemiaidentifiesfolr1asacartcelltarget AT leontiamanda cbfa2t3glis2modelofpediatricacutemegakaryoblasticleukemiaidentifiesfolr1asacartcelltarget AT huangbenjaminj cbfa2t3glis2modelofpediatricacutemegakaryoblasticleukemiaidentifiesfolr1asacartcelltarget AT riesrhonda cbfa2t3glis2modelofpediatricacutemegakaryoblasticleukemiaidentifiesfolr1asacartcelltarget AT hylkematiffanya cbfa2t3glis2modelofpediatricacutemegakaryoblasticleukemiaidentifiesfolr1asacartcelltarget AT castrosommer cbfa2t3glis2modelofpediatricacutemegakaryoblasticleukemiaidentifiesfolr1asacartcelltarget AT tangthaot cbfa2t3glis2modelofpediatricacutemegakaryoblasticleukemiaidentifiesfolr1asacartcelltarget AT mckaycydn cbfa2t3glis2modelofpediatricacutemegakaryoblasticleukemiaidentifiesfolr1asacartcelltarget AT perkinslakeisha cbfa2t3glis2modelofpediatricacutemegakaryoblasticleukemiaidentifiesfolr1asacartcelltarget AT pardolaura cbfa2t3glis2modelofpediatricacutemegakaryoblasticleukemiaidentifiesfolr1asacartcelltarget AT sarthyjay cbfa2t3glis2modelofpediatricacutemegakaryoblasticleukemiaidentifiesfolr1asacartcelltarget AT beckmanamyk cbfa2t3glis2modelofpediatricacutemegakaryoblasticleukemiaidentifiesfolr1asacartcelltarget AT williamsrobin cbfa2t3glis2modelofpediatricacutemegakaryoblasticleukemiaidentifiesfolr1asacartcelltarget AT idemmilirhonda cbfa2t3glis2modelofpediatricacutemegakaryoblasticleukemiaidentifiesfolr1asacartcelltarget AT furlanscott cbfa2t3glis2modelofpediatricacutemegakaryoblasticleukemiaidentifiesfolr1asacartcelltarget AT ishidatakashi cbfa2t3glis2modelofpediatricacutemegakaryoblasticleukemiaidentifiesfolr1asacartcelltarget AT calllindsey cbfa2t3glis2modelofpediatricacutemegakaryoblasticleukemiaidentifiesfolr1asacartcelltarget AT srivastavashivani cbfa2t3glis2modelofpediatricacutemegakaryoblasticleukemiaidentifiesfolr1asacartcelltarget AT loebanisham cbfa2t3glis2modelofpediatricacutemegakaryoblasticleukemiaidentifiesfolr1asacartcelltarget AT milanofilippo cbfa2t3glis2modelofpediatricacutemegakaryoblasticleukemiaidentifiesfolr1asacartcelltarget AT imrensuzan cbfa2t3glis2modelofpediatricacutemegakaryoblasticleukemiaidentifiesfolr1asacartcelltarget AT morrisshellim cbfa2t3glis2modelofpediatricacutemegakaryoblasticleukemiaidentifiesfolr1asacartcelltarget AT pakiamfiona cbfa2t3glis2modelofpediatricacutemegakaryoblasticleukemiaidentifiesfolr1asacartcelltarget AT olsonjimm cbfa2t3glis2modelofpediatricacutemegakaryoblasticleukemiaidentifiesfolr1asacartcelltarget AT lokenmichaelr cbfa2t3glis2modelofpediatricacutemegakaryoblasticleukemiaidentifiesfolr1asacartcelltarget AT brodersenlisa cbfa2t3glis2modelofpediatricacutemegakaryoblasticleukemiaidentifiesfolr1asacartcelltarget AT riddellstanleyr cbfa2t3glis2modelofpediatricacutemegakaryoblasticleukemiaidentifiesfolr1asacartcelltarget AT tarlockkatherine cbfa2t3glis2modelofpediatricacutemegakaryoblasticleukemiaidentifiesfolr1asacartcelltarget AT bernsteinirwind cbfa2t3glis2modelofpediatricacutemegakaryoblasticleukemiaidentifiesfolr1asacartcelltarget AT loebkeithr cbfa2t3glis2modelofpediatricacutemegakaryoblasticleukemiaidentifiesfolr1asacartcelltarget AT meshinchisoheil cbfa2t3glis2modelofpediatricacutemegakaryoblasticleukemiaidentifiesfolr1asacartcelltarget |