Cargando…
CNN-LSTM deep learning based forecasting model for COVID-19 infection cases in Nigeria, South Africa and Botswana
BACKGROUND: COVID-19 pandemic has indeed plunged the global community especially African countries into an alarming difficult situation culminating into a great deal amounts of catastrophes such as economic recession, political instability and loss of jobs. The pandemic spreads exponentially and cau...
Autores principales: | Muhammad, L. J., Haruna, Ahmed Abba, Sharif, Usman Sani, Mohammed, Mohammed Bappah |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9663291/ https://www.ncbi.nlm.nih.gov/pubmed/36406187 http://dx.doi.org/10.1007/s12553-022-00711-5 |
Ejemplares similares
-
Improving the Efficiency of Multistep Short-Term Electricity Load Forecasting via R-CNN with ML-LSTM
por: Alsharekh, Mohammed F., et al.
Publicado: (2022) -
Detection of Corona Faults in Switchgear by Using 1D-CNN, LSTM, and 1D-CNN-LSTM Methods
por: Mohammed Alsumaidaee, Yaseen Ahmed, et al.
Publicado: (2023) -
A Deep CNN-LSTM Model for Particulate Matter (PM(2.5)) Forecasting in Smart Cities
por: Huang, Chiou-Jye, et al.
Publicado: (2018) -
CNN and LSTM-Based Emotion Charting Using Physiological Signals
por: Dar, Muhammad Najam, et al.
Publicado: (2020) -
NLOS Identification in WLANs Using Deep LSTM with CNN Features
por: Nguyen, Viet-Hung, et al.
Publicado: (2018)